
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1115

Analyzation of Safety Verification at different stages of Safety Critical
System Development

 K. Amarendra Prof. Dr. P. Seetharamaiah Prof. Dr. J.A. Chandulal
 Research Scholar, Professor Emeritus, Professor, Department of CSE,
 Department of CSE, Department of CS&SE, GITAM Institute of Technology,
 GITAM University, Andhra University, GITAM University,
 Visakhapatnam Visakhapatnam Visakhapatnam

---***---
Abstract— In many important applications of computers
today the most difficult problem that must be faced is how
to obtain sufficiently safe operation. Due to the growing
increase in computer-related technologies, industry is
continuing to put greater demands on software-controlled
systems. These demands sometimes place software in total
or partial control of critical system functions such as
navigating planes, determining radiation dosages, shutting
down nuclear reactors, and identifying military targets. A
fault in such a critical system can result in catastrophic
consequences such as death, injury, or environmental
harm. In order to detect and prevent such faults,
researchers have developed safety standards, safety
analysis techniques, and fault-tolerant techniques.

Keywords— Safety critical system, Hazard, Fault- Tolerant,
Safety Standards, Static and Dynamic Verification.

 Introduction

Ensuring the correctness of computer systems is a

complex task of paramount importance, especially

when such systems control and monitor life-critical

operations. The verification of industrial computer

systems is particularly difficult due to their size and

complexity. The most frequently used methods,

simulation and testing, are not exhaustive and can

miss important errors. While the use of both

methods can increase the reliability of the

application, they cannot fulfill the verification needs

of modern complex safety-critical systems. Formal

methods are an additional methodology to tackle

this problem. Formal verification tools allow an

exhaustive search to be automatically performed on

the state space of the system, avoiding the

shortcomings of both simulation and testing.

The increase in software-controlled systems is due

to many factors such as cost, flexibility, and

reliability. Research in software safety falls into two

categories: (1) improving software safety before

releasing the product by using verification

techniques and (2) improving software safety after

releasing the product by using fault-tolerant

techniques. For verification techniques, most

researchers concentrate on static methods, which

analyze a software system’s safety without

executing it, and ignore dynamic methods, which

analyze a system’s safety by executing it. This

research concentrated on developing a

methodology framework that combines static-

verification, dynamic-verification, and fault-

tolerant concepts for verifying safety-critical

software systems.

This research’s methodology combines software-

safety methods into a comprehensive whole for the

purpose of verifying safety-critical software

systems. For clarification purposes, this document

treats the words approach, technique, and method

as having synonymous definitions. A methodology

brings structure, guidance, and specific techniques

all together in order to improve a given process - in

this case, the process is software-safety verification.

This research deals with Safety Verification and

validation Methodology(SVVM). Below diagram

represents Standard phases for System

development showing general exit and entry

conditions.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1116

Deficiencies within software safety: As normal for

relatively new fields, software-safety methods and

practices have deficiencies in many areas. Within

software engineering, researchers have been

looking into safety-related issues for approximately

the past decade. Their research focused mainly on

techniques for statically verifying and modeling

safety-critical software systems and providing

standards for developing such systems. However,

safety standards are often too vague and have few

and scattered guidelines.

II.SAFETY ISSUES

Safety Vs Reliability: Reliability deals with making

sure a software system has no faults. Howden

refers to a fault as an error in the software, and a

failure as the erroneous behavior resulting from a

fault. Reliability concentrates on removing all faults

from the software without respect to the fault’s

severity or consequences; therefore, any fault

degrades reliability to some degree.

 Safety, on the other hand, deals only with faults

that can cause accidents. The United States’

Department of Defense (DoD) defines the term

accident as "an unplanned

event or series of events that results in death or

major injury to personnel or damage to the launch

vehicle, experiments, spacecraft, associated support

equipment, or facilities."The DoD defines a major

injury as "any injury which results in admission to a

hospital such as bone fracture, second or third

degree bums, severe lacerations, internal injury,

severe radiation exposure, chemical or physical

agent toxic exposure, or unconsciousness.

Risk Analysis : The Electronic Industries Association

(EIA) defines a hazard as an inherent characteristic

of a thing or situation that has the potential of

causing an unexpected,

unplanned, or undesired event or series of events

that has harmful consequences such as injury,

death, environmental harm, or illness Risk then is a

function of a hazard’s seventy and the probability

that the hazardous event will occur.

Hazard Analysis :

A hazard is a situation that poses a level of threat to

life , health, property or environment. Most

hazards are dormant or potential , with only a

theoretical risk of harm. A hazardous situation that

has come to pass is called an incident . Hazard

analysis includes hazard identification,

Categorization, Resolution, Documentation and

review.

III. SAFETY VERIFICATION STANDARDS

In dealing with system safety , we have to

concentrate both on software safety and hardware

safety. In this paper we mainly discuss about

relevant standards and techniques dealing with

software-safety research. Specifically, this research

Formulate

User Needs

Develop

System requirements

Develop

System Design

Develop

System Specifications

Build System

System

Maintenance

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1117

discusses fault tolerance, static verification,

dynamic verification.

 Research in software safety falls into two

categories:(1) improving software safety before

releasing the product by using verification

techniques and (2) improving software safety after

releasing the product by using fault-tolerant

techniques. For verification techniques, most

researchers concentrate on static methods, which

analyze a software system’s safety without

executing it, and ignore dynamic methods, which

analyze a system’s safety by executing it. This

research concentrated on developing a

methodology framework that combines static-

verification, dynamic-verification, and fault-

tolerant concepts for verifying safety-critical

software systems.

Static Verification:

For safety-critical software systems, static

processes should be in place to insure that the

output from each phase satisfies the previous

phase’s safety requirements. Different techniques

are described as follows.

Failure-Modes-and-Effects Analysis (FMEA) : This

static technique concentrates on analyzing a

component’s potential failures, each failure’s effects

on the system, and

the immediate causes for each failure.

Fault-Tree Analysis (FTA): Engineers can use this

static technique to analyze the causes for any

specific system condition. For safety-critical

systems, engineers use FTA to analyze the causes

for hazards.

Event-Tree Analysis (ETA):This technique traces an

event using forward analysis in order to determine

its consequences on the system . ETA is similar to

FMEA since both use forward analysis in order to

determine an event’s effects on the system.

Petri nets : A Petri Net is a mathematically-based

static model for representing and analyzing system

flow and control.

Safety Standards:

Governments and industry have developed several

standards that address various aspects of safety-

critical systems.

MIL-STD-882B :This requirements standard

describes what the Department of Defense (DoD)

expects from the government and contractors who

are building safety-critical systems. The standard

gives a general introduction to safety issues such

definitions of important terms, the importance of

managerial participation and support for safety,

and an outline for a system-safety developmental

team.

MTL-STD-1574A : As the forward for this standard

mentions, it is a tailored application of MDL-STD-

882B. The standard contains the normal definitions

for safety-related terms, guidelines for a system-

safety organization, guidelines on contractors and

subcontractors, and functional guidelines for

various system-safety groups.

DOD-STD-2167A :This standard is meant to help

establish requirements for defense-related

software system. The standard outlines what

developers must do for the following areas: (1)

software management, (2) software engineering,

(3) formal qualification testing, (4) software-

product evaluations, (5) software configuration

management,(6) transitioning to software support.

DO-178A: Various working groups from

organizations around the world, who are members

of the radio technical commission for aeronautics

(RTCA), helped to develop this standard to

recommend methods and techniques for the

orderly development and management of airborne

software system.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1118

SEB6 –A: This standard which the Electronic

Industries Association (EIA) created, provides basic

information and guidelines for carrying out the

activities and tasks in MIL-STD-882B, DOD-STD-

2167A, and MIL-STD-1574AJ The standard contains

practical information for all life-cycle phases from

requirements.

Dynamic verification:

 Dynamic verification checks the software’s

internal consistency (during run time) against its

specification and design; therefore, making sure

that critical software components satisfy specific

entry and exit criteria. Dynamic-verification

methods that apply to safety-critical software are

normally in addition to standard testing practices

such as statement coverage, branch coverage, etc.

 Self-checks: This technique is a classification of

dynamic fault-detection categories, which various

fault-tolerant techniques use. For example, N-

version programming uses a replication self-check

while a recovery-block approach uses replication

and either a reversal or reasonableness self-check.

Statistical Testing: Statistical testing is to calculate

the software’s failure probability. Statistical testing,

in order to be effective, requires an accurate input

distribution function and a method for randomly

generating and automatically verifying test cases.

IV. DEVELOPMENT

 There are many software fault removal techniques

in literature. The most frequent classification is by

differentiating between static and dynamic

techniques [8]. Different authors focus on

probabilistic based approaches (like the Markov

modeling method), or statistical, approaches like

statistical testing, software reliability models [9].

However most of the fault removal techniques are

non-probabilistic. In some standards, static

techniques require formal methods and proofs

based on mathematical demonstrations. Other

standards and literature classify these techniques

in functional and logical terms [10] or by just

mentioning functional testing like in [11] or

structural testing, like in [12].

None of the fault removal techniques like algorithm
analysis, control flow analysis, Petri-Net analysis,
reliability block diagrams, sneak circuit analysis, event
tree analysis, FMEA and FTA can be considered apt and
complete in all respects, when used in isolation. A way
out of this is to analyze how to combine individual
techniques so that the fault removal process is
significantly improved. One of the most effective
combinations is FMEA+FTA. The literature [9,10]
already mentions that FTA technique can be associated
effectively with other practices like FMEA. Their greatest
advantage is in combination with each other. FMEA
concentrates in identifying the severity and criticality of
failures and FTA in identifying the causes of faults. FMEA
technique is a fully bottom-up approach and FTA has a
fully complementary top-down approach. Moreover,
these two techniques are directly compatible with
system level techniques.

In this paper, we propose an implement an integrated
approach to software safety analysis for critical systems
that combines two existing fault removal techniques –
FMEA and FTA to identify and eventually remove
software faults at successive software development
phases. We have applied our integrated safety approach
to a model railroad crossing control system to validate
its effectiveness. We also compare how the safety-
specific software development of a critical system is
distinct from the traditional non-safety-specific software
development.

Railroad Crossing Control System (RCCS)
Crossing gates on a full-size railroads are controlled by a
complex control system that causes the gates to be
lowered to prevent access to the crossing shortly before
a train arrives and to be raised to allow access to resume
after the train has departed. This requires the detection
of approaching trains or the manual actuation of the
crossing gates by an operator. RCCS is a prototype, real-
time, safety-critical railroad crossing control system of
limited complexity. It is composed of several software-
controlled hardware components.

RCCS System Functions:
• Control the overall operation of train on the track

circuit.

• Control the opening and closing of Gate 1 and 2 at

the railroad intersections

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1119

• Control the track lever to change the track route

from the outer to the inner loop

• Check the internal health of all the subsystems

• Control the train operation at the Signal Lights

• Monitor all the sensors on the track circuit

RCCS System Operations:

When RCCS is first switched on, the controller does

a preliminary check of the normal working status of

all the subsystems involved – the driver circuitry,

the sensors, the gate assemblies, and the train

signals. If all the components are found to be in

normal working condition, it executes the code

related to normal operation. Initially, the train

starts from the platform location and is

programmed to run on the outer track. After it

completes this cycle, it changes direction and runs

on the inner track. This change is facilitated by the

track-change level which is present at the

intersection of the outer track and inner track.

Along the track, the two gates Gate 1 and Gate 2 are

automatically lowered when the train nears the

railroad intersection and raised when the train

leaves the intersection. Whenever the signal lights

display Red, the train comes to a halt and resumes

running only after a Green signal is given.

Whenever the train detects any physical obstacle

on the track, the train comes to a halt.

Figure 5 shows the block diagram of RCCS. If the

Figure 5. RCCS block Diagram

train passes Sensor2 positioned prior to gate, a signal is
sent to the controller indicating the approaching train.
The controller then sends a signal to the gates assembly,
causing the gate arms on either side of the road to close.
When the train finally has passed Sensor3, which is
positioned just beyond the gate crossing section, a
corresponding signal is sent to the controller, which in
turn triggers both the gate arms to open simultaneously.

V. SAFETY ANALYSIS AND RESULTS

The safety analysis of RCCS software functions

takes place in three sequential steps.

• Software Failure Mode and Effects Analysis

(SFMEA):

This analysis is performed in order to determine

the top events for lower level analysis. SFMEA

analysis will be performed following the list of

failure types. SFMEA will be used to identify critical

functions based on the applicable software

specification. The severity consequences of a

failure, as well as the observability requirements

and the effects of the failure will be used to define

the criticality level of the function and thus whether

this function will be considered in further deeper

criticality analysis. The formulation of

recommendations of fault related techniques that

may help reduce failure criticality is included as

part of this analysis step.

• Software Fault Tree Analysis (SFTA)

After determining the top-level failure events, a

complete Software Fault Tree Analysis shall be

performed to analyse the faults that can cause those

failures. This is a top down technique that

determines the origin of the critical failure. The top-

down technique is applied following the

information provided at the design level,

descending to the code modules . SFTA will be used

to confirm the criticality of the functions (as output

from SFMEA) when analyzing the design and code

(from the software requirements phase, through

the design and implementation phases) and to

help:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1120

- Reduce the criticality level of the functions due to

software design and / or coding fault-related

techniques used (or recommended to be used)

 - Detail the test-case definition for the set of

validation test cases to be executed.

 • Evaluation of Results :The evaluation of the

results will be performed after the above two steps

in order to highlight the potential discrepancies and

prepare the recommended corrective measures.

Recommendation can be given to design and coding

rules.

SFMEA Analysis of RCCS

The SFMEA, a sample of which is shown in the Table 2
below presents some software failure modes defined for
RCCS. The origin and effects of each failure mode are
analyzed identifying the top level events for further
refinement, when the consequence of this failure could
be catastrophic for this system. Three top events were
singled out for further analysis of failure mode Gate not
closed as train is passing through railroad intersection.

Failure Mode Possible Causes Effect Sever-ity of

risk
Prevention

And
Compensation

Gate not closed as train is
passing through

a) sensor not detected by s/w
b) gate motor mechanism is

defective
c) s/w gives wrong command

d) s/w gives right command at
wrong time

Train
collision with
passing road

traffic leading
to accidents

Critical Software first checks the working status of gates
each time the train is about to cross the gates

Track change lever is not
acti-vated to change train

route

a) sensor is not detected by s/w
b) track lever motor mechanism

is defective
c) s/w gives wrong command to

lever
d) s/w gives right command at

wrong time
e) s/w fails to give a command to

acti-vate lever

Train fails to
change its

path from the
outer track

circuit to the
inner track

circuit
leading to
accident

Critical Software first checks the working status of the
track lever each time the train is about to enter

the inner track loop

Control program software
is corru- pted

a) logic fault
b) interface fault

c) data fault
d) calculation fault

e) memory fault

Unpredictable
sequence of
opera-tion
leading to
accident

Critical
or

Catast-
rophic

Algorithm logic is verified for accuracy.
Data Structures and Memory overflow is

checked.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1121

SFTA Analysis of RCCS

The fault tree is a graphical representation of the

conditions or other factors causing or contributing

to the occurrence of the so-called top event, which

normally is identified as an undesirable event. A

systematic construction of the fault tree consists in

defining the immediate cause of the top event.

These immediate cause events are the immediate

cause or immediate mechanism for the top event to

occur. From here, the immediate events should be

considered as sub-top events and the same process

should be applied to them. All applicable fault types

should be considered for applicability as the cause

of a higher level fault. This process proceeds down

the tree until the limit of resolution of tree is

reached, thereby reaching the basic events, which

are the terminal nodes of the tree.

A new technique was developed based on a

combination of two existing techniques: the failure

modes and effects analysis (SFMEA) and fault tree

analysis (SFTA). These two techniques complement

each other very well: SFMEA is a bottom-up

approach that concentrates on identifying the

severity and criticality of the failures and SFTA as a

fully complementary top-down approach that

identifies the causes of the faults. It is possible to

integrate both techniques with commonly used

techniques at system level. The resulting new

technique can be shown to combine nearly all

aspects of existing fault removal techniques. This

should enable, at least theoretically, coverage of a

large number all software failure modes and fault

types that occur in real time critical software

applications.

VI. CONCLUSION

This paper gives brief description about static and

dynamic verification methods for safety critical

systems. It also studies about fault tolerant

techniques. The methodology follows a life-cycle

approach to verification by supplying methods and

guidelines for preliminary hazard analysis, high-

level-design hazard analysis, detailed-design

hazard analysis, and code-level hazard analysis. The

methodology contains several testing and coverage

techniques along with guidelines for dynamic

verification, which is an area that research largely

ignores in spite of its importance.

References

[1] MIl-STD-1574A (USAF), “System Safety Program for Space and
Missile Systems,” Dept of Defense, US Govt. Printing Office, 1979

[2] P. V. Bhansali, “Software Safety: Current Status and Future
Directions” ACM SIGSOFT Software Engineering Notes, Volume 30
Number 1, page 1, January 2005

[3] John C. Knight, “Safety Critical Systems: Challenges and
Directions”, Proceedings of the 24

th

International Conference on
Software Engineering (ICSE), Orlando, Florida, 2002

[4] MIL-STD-882C, System Safety Program Requirements 1993,
http://eic.ipo.noaa.gov/IPOarchive/MAN /doc124.pdf

[5] N.G. Leveson, Safeware: System Safety and Computers, Addison-
Wesley, Reading, MA, USA, 1995.

[6] W.R. Dunn, Practical Design of Safety-Critical Computer Systems,
Reliability Press, 2002.

[7] M.S. Jaffe and N.G.Leveson, “Completeness, robustness, and safety
in real-time software requirements specification”, Proc. of the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1122

11th International Conference on Software engineering (ICSE),
Pittsburgh, USA, pp. 302-311, 1989

[8] Raghu Singh. “A Systematic Approach to Software Safety”.
Proceedings of Sixth Asia Pacific Software Engineering Conference
(APSEC), Takamatsu, Japan ,1999.

[9] T. Shimeall and N. Leveson, An Empirical Comparison of Software
Fault Tolerance and Fault Elimination, IEEE Transactions On
Software Engineering, vol. SE-17, no. 2, pp. 173-183, 1991.

[10] P. Rodríguez Dapena. ‘How are static fault removal techniques
verifying software safety and reliability?’ Joint ESA-NASA Space-
FlightSafety Conference. ESA. 06-Nov-2001

[11] Software Safety. NASA-STD-8719.13A NASA Technical Standard.
September 15, 1997 Replaces NSS 1740.13 dated February 1996.
http://swg.jpl.nasa.gov/resources/index.shtml

[12] L. M. Ippolito, D. R. Wallace A Study on Hazard Analysis in High
Integrity Software Standards and Guidelines. National Institute of
Standards and Technology. NIST IR 5589. January 1995

