
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1110

Developing an Application Tracing Utility for Mule ESB Application on

EL (Elastic Search, Log stash) Stack Using AOP

Mohan Bandaru, Amarendra Kothalanka, Vikram Uppala

Student, Department of Computer Science and Engineering, DIET College, Anakapalli, A.P, INDIA
Professor, Department of Computer Science and Engineering, DIET College, Anakapalli, A.P, INDIA

Developer, Certified associate Mulesoft developer

---***---
Abstract – A framework for detecting and recording

the flaws that happen during the usage of integration

solution using MULE ESB is designed and a library

functionality to perform this is discussed in this paper.

The main of this approach of this solution is to identify

the flaws and performance for every activity designed

as part of service in mule esb platform. The recorded

information can be stored at different levels of detail,

commonly called the logging levels. For some modules

more than others, it may be required to store more

detailed information about any error that arises during

its usage according to its importance. An integration

solution also needs to print the stack trace containing

the error information on to the log files when an error

occurs for the user to understand the nature of the

error. When dealing with legacy integration

applications, it is difficult to insert code. The proposed

and designed framework is tested with a web

application. The need of an Enterprise Service Bus (ESB)

has been a relentless need of the market; the bigger the

systems get after collaboration the failures of the ESB's

was inevitable. Things moved to more gravity when the

bulkiest of the systems like SAAS applications came into

picture, with the advent of this not of the efficiency but

also the factors like stability, reliability, resource

utilization were also of pivotal importance.

 Key Words: mule esb, logging, mule notification,

anypoint platform.

1. Introduction

Mule ESB is a lightweight enterprise service bus (ESB)
and integration platform which provides comprehensive
application helps in integration for small businesses and
large enterprises resources and allows developers to
connect applications together easily and quickly, enabling
for data exchange . The key advantage of an ESB is that it

allows different applications to communicate with each
other by acting as a transit system for carrying data
between applications within your enterprise or across the
Internet. Mule ESB includes powerful capabilities..

One thing that sets Mule ESB unique apart from other

competing ESB offerings is that Mule does everything an

ESB is expected to do like orchestration, mediation,

routing, management, messaging, processing, etc. Mule

isn't just an ESB and it is also an integration platform that

allows to quickly creating elegant, enabling lightweight

integration architectures tailored to your specific use

scenario.

The Mule project focused on creating a stable, standards-

based framework and tools that make great integration

architecture simple. This provides Mule to leverage the

extensibility, unparalleled interoperability and flexibility

of open-source integration.

Tracing utility model setup as below architecture. The
mule server along with logstash which collect mule logs
and feed to it elastic search for indexing which gives
efficient search result.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1111

2. Mule tracing utility

The mule tracing utility jar built using the mule context

notification mechanism. The mule tracing utility JAR

contains the utility classes which handles the endpoint

notification Listeners, Message Processors listeners and

exception Notification Listeners. The custom written

reporter classes logs the information in specific format

like json or xml bases on the configuration parameter.

Each of mule flow components were traced with below

format for each individual component in the mule flow.

{

 "flowName": "loggingsampleFlow",

 "component": "endpoint.http.localhost.8082.log",

 "messageID": "18f83f60-8966",

 "timeStamp": "ThuNo12 23:22:10 IST 2015",

 "payload": {.. },

 "actionName": "response"

}

If there are any exceptions there was an exception tag

added as part of original message for respective

component.

This utility jar is used any mule project to generate log

tracing each component of flow. The additional

configuration required was adding the notification

listeners as part of spring beans where the listeners are

initialized during the server run time. A properties file

need to define in mule project which contains the

properties like enabling or disabling logging for respective

mule category of elements like endpoint, message

processors, enabling payload and the log format.

checkEndpointLogging=true

checkMessageProcessorLogging=true

checkPayloadLogging=true

loggingFormatType=json or xml

With configuring the log4j properties the logs are

generated in specific format using the

RollingFileAppender.

3. LOGSTASH usage in collecting mule logs

The mule log file collected by logstash collector and it

stored in Logstash storage or external storage system

which can be configured in Logstash config file. The

Logstash composed of three stages of event processing

and the pipeline include the stages from inputs → filters →

outputs. Inputs will generate events, filters modify them

on conditions, and outputs ship them elsewhere. Inputs

and outputs stages support codecs that enables to encode

or decode the data as it enters or exits the pipeline

without having to use a separate filter. We use inputs to

get data into Logstash. Some of the more commonly-used

inputs are file, syslog, redis, lumberjack processes events

sent in the lumberjack protocol which was termed as

logstash-forwarder. Grok is one best component in

Logstash to parse unstructured log data into something

structured and query-able.

Outputs are the one which stand as final phase in the

series of processing steps of the Logstash pipeline. An

event passes through multiple outputs, but once every

output is being processed, the event has finished as part of

its execution. The basic stream filters that can operate as

part of an input or output are Codecs. Codecs facilitate

easy separation of the transport of mule log information

from the serialization process. Edit Events of fault

tolerance are passed from stage to stage via internal

queues implemented with a Ruby Sized Queue. A Sized

Queue holds maximum number of items bases on the

capacity it hold. When the queue reaches its maximum

limit, all writes to the queue are blocked. These internal

queues are not intended for storing messages long-term.

The small queue sizes specifies that the Logstash simply

holds by blocking and stalls for a heavy load or temporary

pipeline issues. The approach is to have either to have an

unlimited queue, as it has the capability to grow

unbounded and eventually exceed memory. In most of the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1112

cases, rejecting the messages outright is equally not

acceptable. An output has a chance to fail or can have

problems due to downstream issues, include possible

cases such as a permissions problems, full disk, service

outages or temporary network failures. Most outputs tries

for redelivery to ship events affected by the failure.

INPUT:

input {
file{
 path => "\testing-tracing-utility\logs\loggingsample.log"
 type => "xmlapptestlogs"
 }
}

FILTERS:

filter {

if [message] =~ /^.*messageID.*$/ {

 grok {

 match => ["message",

"<messageID>%{DATA:messageID}</messageID>"]

 match => ["message", "\"messageID\":

\"%{DATA:messageID}\","]

 }

 }

 if [message] =~ /^.*ExecptionCause.*$/ {

 grok {

 match => ["message",

"<ExecptionCause>%{DATA:execptionCause}</Execption

Cause>"]

 match=>["message","\"ExecptionCause\":

\"%{DATA:execptionCause}\""]

 }

 }

ruby {

 code=>"event['@timestamp'] =

event['@timestamp'].localtime() "

 }

multiline {

 type => "xmlapptestlogs"

 pattern => "^%{TIMESTAMP_ISO8601}"

 negate => true

 what => "previous"

 }

}

Logstash specially used for managing events and mule esb

logs. It provides an integrated framework for log

collection, centralization, parsing, storage and search. It

helps in shipping generated mule esb logs from many

types of sources, parse them, get the right timestamp,

index them, and store them. Logstash is free and open

source. It has large collection of filters that allows

modifying, manipulating and transforming those log

events and extracting the information need from these log

events to give them context.

Below output configuration depicts the elastic search

configuration.

OUTPUT:

output {

 elasticsearch {

 host => 'localhost'

 protocol => "http"

 port => "9200"

 index => 'mohanlogs'

 }

}

4. ELASTIC Search Engine

Elastic Search is based on lucene and it is an open source,

Restful search engine and distributed. It is easy to

configure and start working with it. Some of the special

functionality of elastic search including distributed the

aggregated results of search performed on different

shards and indices, the Schema less a document oriented.

Supports JSON format, mapping automatic types is

supported. REST interface include faceted Search,

replication, fail over and distributed nature provides

inbuilt fail over.

Elastic search is a querying tool. It is capable of perform

some other ingenious tasks, but at its core implementation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1113

it is composed of paddle through text information,

returning text or statistical analyses of a entirety of text.

cluster.name: elasticsearch_test

node.name: "Mohan"

node.master: true

Elastic search provides the indexing, storage and

searching functionality of the ELK stack. Elasticsearch

allows to query on the log data at a speed and at a scale

search capability never before possible. It is used for full

text search, search structured and performing analytic s.

Elasticsearch is aware of this structure and the JSON

format is hierarchical in data. Beyond searching, simple

Elasticsearch can also apply ranking algorithms on result

and calculate aggregate statistics across search results.

5. Experimentation and Results

Tracing utility jar replaces the default logging mechanism

and traces each mule flow component activity. Logs the

information of each stage of component before and after

processing.

Sample mule logs file after adding tracing utility jar to

mule projects. These logs are collected by the log collector

Logstash which these data will be indexed over elastic

search. Each process is carried out asynchronous mode

and helps in performance.

An UI application is built using Adobe FLEX which will

trigger the data sets search over elastic search.

Each of the mule transaction made visible in the

application which will give the facility to provide the

complete transaction details.

6. Conclusion

With this tracing utility jar embedded in mule applications

will override default mule logging information. All the

mule source and message processors are available for

tracing and logging. In the mediation flow, the tracing of

an activity before or after any other mediation primitive

mule components that has an Input, Output. Considering

the differentiate between logging and tracing components

by considering the environments in which they usually

apply. The mule tracing components are used for any

production based application deployed on-premise which

logs every transaction that take place. Although tracing

utility add little overhead while comparing to logging

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1114

components for data collection and storage. Their design

is more performance-oriented for production use.

One benefit for all mule component tracing and logging

mechanisms are that the process can completely enable it

completely enables or disable it at runtime without the

involvement of the development environment. This makes

it applicable for test server or production server

environments.

The logstash log collector collects the mule integration

process logs. It is responsible for ingesting data, every

time new information of log will be collected at regular

interval of time instantly. Logstash act as a log collector,

shipper and processor. The logs are indexed over elastic

search component. The log analysis will be show over a

web application built using Flex.

7. References

[1] https://www.mulesoft.com/resources/esb/what-
mule-esb#sthash.bbhGdGZZ.dpuf

[2]http://www.mulesoft.org/documentation-
3.2/display/MULEUSER/Architecture+Guide.

[3] www.mulesoft.com.

[4] http://www.javaworld.com/article/2072359/ java-
web-development/capture-the-benefits-of-asynchronous-
logging.html.

[5] https://www.elastic.co/guide/en/logstash/ current /
pipeline.html.

[6]http://www.adobe.com/devnet/flex/quickstarts/
coding_mxml_as.htmls

BIOGRAPHIES

Mohan Bandaru
M.Tech student,
Dadi Institute of Engineering
& Technology, CSE
Department.
Certified Associate Mulesoft
Developer

Amarendra Kothalanka
Vice Principal & Professor,
Department of CSE,
Dadi Institute of Engineering
& Technology, NH-5,
Anakapalle, Visakhapatnam-
531002

Vikram Uppala
Certified Associate Mulesoft
Developer

