
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 869

Balancing & Coordination of Big Data in HDFS with Zookeeper and

Flume

Smita Konda, Rohini More

1 Assistant Professor, Computer Science & Engineering, A. G. Patil Institute of Technology, Maharashtra, India
2 Assistant Professor, Computer Science & Engineering, A. G. Patil Institute of Technology, Maharashtra, India

---***---
Abstract - In the today’s age of Computer science &

Information technology data processing & storing in

very crucial aspect. Currently even a terabytes and

petabytes of data is not enough to store large chunks of

database. Therefore companies these days make use of

concept called Hadoop in their application. Today’s

data Warehouses are also not able to satisfy data

storage needs. Hadoop is deliberate to store huge

volume of data sets constantly. Hadoop is well-liked

open source software which supports parallel and

distributed data processing. Hadoop is highly scalable

computer platform. Hadoop allows users to process

and store huge amount which is not possible while

using less scalable techniques. Some fault tolerance

mechanisms are provided by Hadoop so that system

works properly even if some failure occurs in system . In

this paper we describe an application called Zookeeper

which enables to manage, synchronize distributed

clusters and allowing coordination in them.

Key Words: Hadoop, Fault tolerance, HDFS, Name

node, Data node, Zookeeper.

1. INTRODUCTION

Hadoop is an open source software framework created by
Doug cutting and Michael J. Cafarella [1]
The Hadoop Distributed File System (HDFS) is intended to
accumulate very big data sets and to stream those data
sets at high bandwidth to user applications.
In a large cluster, thousands of servers are present to run
user application tasks. A key component of Hadoop is the
Hadoop Distributed File System (HDFS), which is used to
store all input and output data for applications.
[3] Hadoop uses a distributed user-level filesystem which
is written in Java and designed for portability across
heterogeneous software and hardware platforms.

1.1 HDFS Architecture

Fig -1: Architecture of HDFS

HDFS follows the master-slave architecture and it has the
following elements.

Namenode
The namenode is the commodity hardware that contains
the GNU/Linux operating system and the namenode
software. It is a software that can be run on commodity
hardware. The system having the namenode acts as the
master server and it does the following tasks[1]:

 Manages the file system namespace.
 Regulates client’s access to files.
 It also executes file system operations such as

renaming, closing, and opening files and
directories[1][2].

Datanode
The datanode is a commodity hardware having the
GNU/Linux operating system and datanode software. For
every node (Commodity hardware/System) in a cluster,
there will be a datanode. These nodes manage the data
storage of their system[2].

 Datanodes perform read-write operations on the
file systems, as per client request.

 They also perform operations such as block
creation, deletion, and replication according to the
instructions of the namenode[2][3].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 870

Block
Generally the user data is stored in the files of HDFS. The
file in a file system will be divided into one or more
segments and/or stored in individual data nodes. These
file segments are called as blocks. In other words, the
minimum amount of data that HDFS can read or write is
called a Block. The default block size is 64MB, but it can
be increased as per the need to change in HDFS
configuration[1][2][3].

1.2 Goal of HDFS

 Fault detection and recovery: Since HDFS

includes a large number of commodity hardware,
failure of components is frequent. Therefore
HDFS should have mechanisms for quick and
automatic fault detection and recovery.

 Huge datasets: HDFS should have hundreds of
nodes per cluster to manage the applications
having huge datasets.

 Hardware at data: A requested task can be done
efficiently, when the computation takes place
near the data. Especially where huge datasets are
involved, it reduces the network traffic and
increases the throughput.

 The File System Namespace
 A traditional hierarchical file organization is supported by
HDFS. The NameNode is responsible to maintain the file
system namespace. Name node keeps the records of
changes made to the file system namespace or its
properties. HDFS maintains an application that specify the
number of replicas of a file. The number of replicas of a file
is called the replication factor of that file. This information
is stored by the NameNode[4].

 Data Replication
 HDFS is intended to store very huge files across machines
in a large cluster. Each file is stored as a sequence of
block; all blocks in a file except the last block are of same
size. The blocks of a file are replicated for fault tolerance.
An application is used to identify the number of replicas of
a file. The replication factor can be specified at file creation
time and can be changed later. Files in HDFS are written
once and have strictly one writer at any time. All decisions
regarding replication of blocks is made by Name node. It
periodically receives acknowledgement as well as block
report from data nodes. Acknowledgement specifies data
nodes are working properly & Block report specifies list of
blocks in the data node[4].

 The Communication Protocols
The top layer of TCP/IP protocol contains all HDFS
communication protocols. A client establishes a

connection to a configurable TCP port on the NameNode
machine. It connects the ClientProtocol with the
NameNode. The DataNodes are connected to NameNode
using the DataNode Protocol. A Remote Procedure Call
(RPC) abstraction is used to wrap both the Client Protocol
and the DataNode Protocol. By design, the NameNode does
not initiate any RPCs. Instead, it only responds to RPC
requests issued by DataNodes or clients[4].

 Robustness
The primary purpose of HDFS is to accumulate data
consistently even in the presence of failures. There are
three common types of failures: NameNode failures,
DataNode failures and network partitions[4].

2. RELATED WORK

Vishal S Patil, Pravin D. Soni et al. [1] described how fault
tolerance is achieved by means ofdata duplication & the
framework of Hadoop. There are two main methods that
are used to create fault tolerance in Hadoop that is
Checkpoint & recovery and Data duplication. In Data
duplication, the similar copy of data is placed on various
data nodes. Hence whenever that data is needed, it is
provided by any of data node which is free that is the data
node is not busy in communicating with any other nodes.
The main benefit of this method is faster recovery from
failures. But this method has main drawback that is
consumption of huge amount of memory to achieve fault
tolerance. It may cause data inconsistency problem. This
method provide faster recovery from failures, therefore it
is widely used technique than checkpoint & recovery. In
checkpoint & recovery method, the concept called rollback
is used. If the failure occurs in the middle of transaction,
then it just rollback the transaction up to the last
consistent stage and then it starts executing transaction
again. The main disadvantage of this method is that it is
time consuming method as compared to previous data
duplication method.
Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert
Chansler et al.[2] illustrated HDFS architecture and given
report on their experience using HDFS to handle 25
petabytes of organization information at yahoo. In this
various FILE I/O OPERATIONS AND REPLICA
MANGEMENT techniques are used to handle huge volume
of data. These operations & techniques are: File read and
write,block placement, replication management,
balancer,block scanner, Decommissioing, Inter-Cluster
Data Copy. In file read and write, client has to take name
node’s permission for reading, writing, creating or
opening new file. In block placement scheme, various
nodes are distributed across various racks & these nodes
communicate with each other through various switches. In
replication management, the block consists of certain

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 871

number of replicas. If block is under or over replicated, to
manage the memory utilization of block, name node
selects replicas to remove. All actions are taken by name
node. A balancer acts as a tool which balances usage on
disk space in HDFS cluster. Block scanner is used to scan
the block replicas to check the saved checksum and match
with block data. In decommissioning, the administrator
creates include and exclude list. Include list contains list of
host addresses of nodes that are registered and exclude
list contains list of host addresses of nodes that are not
registered. Inter-cluster copy uses MapReduce framework
to manage parallel scheduling of tasks and fault
recognition and recovery.
Jeffrey Shafer, Scott Rixner, and Alan L. Cox et al. [3]
evaluate HDFS performance and reveals different
performance issues. Three problems discussed in this
paper are portability assumptions, portability limitations,
architectural bottlenecks.
Vinod Kumar Vavilapalli, Arun C Murthy et al.[5]
discussed about present state of deployment, design and
development of future generation of Hadoop’s component:
YARN. YARN is used to separate resource management
infrastructure from programming model and assigns
different scheduling functions like task fault tolerance.
Asso.Prof. Ashish Sharma, Snehlata Vyas et al. [6],
proposed Hadoop framework Apache Hadoop 2 to run
variety of applications. YARN in Hadoop 2 puts both job
scheduling functions and resource management in
different layer. Hadoop 2 gives better performance than
Hadoop 1. Also this paper addresses limitations and also
overcomes difficulty in Hadoop 1. This paper shows the
main differences between Hadoop 1 and Hadoop 2 by
showing the working of both architectures. In Hadoop 1.0
only MapReduce is present which manages all work like
data processing and cluster management. Due to this
MapReduce has faced many limitations. In Hadoop 2.0, the
architecture divides the work of MapReduce to only data
processing and cluster resource management is handled
by YARN. This makes MapReduce burden free. MapReduce
in Hadoop 2.0 is called as MR2.
Mrudula Varade, Vimla Jethani et al. [7], described three
techniques for evenly distributing metadata over server.
Hashing, sub-tree partitioning and consistent hashing are
the techniques used. This paper shows the differences
between all the three techniques and their
implementations. And concludes that hashing is the best
technique of all three in terms of performance, scalability,
reliability, load balancing.
Howard Karlo__ Siddharth Suriy Sergei Vassilvitskiiz et al.
[10], shows the comparison between PRAM and
MapReduce. The model uses MapReduce paradigm which
aims is to reduce the number of machines and restricting
the total memory per machine. The main purpose is to
develop a model for proficient computation over larger
data sets. This paper gives definition of MapReduce
programming paradigm. Definition 1. A mapper is a

(possibly randomized) function that takes as input one
ordered <key; value> Pair of binary strings. As output the
mapper produces a finite multiset of new <key; value>
pairs. It is important that the mapper operates on one
<key; value> pair at a time.
Definition 2. A reducer is a (possibly random-ized)
function that takes as input a binary string k which is the
key, and a sequence of values v1; v2; which are also binary
strings. As output, the reducer produces a multiset of pairs
of binary strings <k; vk; 1>, <k; vk; 2>, <k; vk; 3> …. The
key in the output tuples is identical to the key in the input
tuple.

3. ZOOKEEPER

In the history every application was a single program
which runs on a single PC with an only CPU. Now days,
situation is changed. In Cloud Computing & Big Data
world, multiple applications are running independently on
different set of computers in parallel with each other. So
its tedious job for developers to maintain coordination
among all these independent applications. It may cause
failure at certain point of time.So to avoid this problem
Zookeeper was designed. Zookeeper is a robust service.
With the help of Zookeeper application developers can
focus only on their application logic rather than
coordination. It exposes a easy API which helps developers
to apply common coordination tasks like managing group
membership, choosing a master server & Managing
metadata. Zookeeper is an application library. It has 2
principal API implementations- C and java. It has a service
component made in java that runs on an assembly of
dedicated servers. Due to assembly of servers, Zookeeper
can increase throughput & tolerate faults or errors [12].
 [14] ZooKeeper is a building block for distributed
systems.Zookeeper is a distributed coordination service. It
is extremely consistent & highly available service. It is top
level apache project created at yahoo. We can create
distributed locks, distributed queues,group membership,
master elections, distributed configuration & much more
with the help of it. Various properties of zookeeper are
operations are controlled, Updates are atomic & changes
are robust. Zookeeper is an important part of HADOOP.
Many HADOOP related projects like HBase, HDFS high
availability & flume are based on it [13].
 Zookeeper provides certain coordination services:

1. Name Service- This service is used to map a name
to some data linked with that name. For example a
telephone directory is a name service in which
name of person is mapped to his or her telephone
number. Another example is DNS service in which
a domain name is mapped to an IP address.
Zookeeper exposes easy interface to do that.

2. Locking- To make a serialized access to shared
resources in distributed sys, we need distributed

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 872

mutexes. With the help of zoolkeeper, we can
implement it efficiently.

Configuration management- ZooKeeper centrally

manage and store the configuration of your distributed

system. This means that any new nodes joining will pick

up the up-to-date centralized configuration from

ZooKeeper as soon as they join the system. This also

allows you to centrally change the state of your distributed

system by changing the centralized configuration through

one of the ZooKeeper clients.

Synchronization- Zookeeper provides synchronized

access between distributed systems and shared resources.

Figure 2. shows Client-Server architecture of Zookeeper.

Fig -2: Client-Server architecture of Zookeeper

ZooKeeper, on its own is a distributed application.
ZooKeeper follows a simple client-server model
where clients are nodes that make use of the service,
and servers are nodes that provide the service. A collection
of ZooKeeper servers forms a ZooKeeper ensemble. At any
given time, one ZooKeeper client is connected to one
ZooKeeper server. Each ZooKeeper server can handle a
large number of client connections at the same time. Each
client periodically sends pings to the ZooKeeper server it
is connected to let it know that it is alive and connected.
The ZooKeeper server in question responds with an
acknowledgment of the ping, indicating the server is alive
as well. When the client doesn't receive an
acknowledgment from the server within the specified
time, the client connects to another server in the
ensemble, and the client session is transparently
transferred over to the new ZooKeeper server.

3.1 Implementation

Zookeeper components shows the service of zookeeper
[15].

Fig -2: Zookeeper Components

Every ZooKeeper server services clients. Clients connect to
exactly one server to submit irequests. Read requests are
serviced from the local replica of each server database.
Requests that change the state of the service, write
requests, are processed by an agreement protocol.
ZooKeeper uses a custom atomic messaging protocol.
Since the messaging layer is atomic, ZooKeeper can
guarantee that the local replicas never diverge. When the
leader receives a write request, it calculates what the state
of the system is when the write is to be applied and
transforms this into a transaction that captures this new
state.

4. FULME

Flume is a distributed, reliable, and available service for

efficiently collecting, aggregating, and moving large

amounts of log data. It has a simple and flexible

architecture based on streaming data flows. It is robust

and fault tolerant with tunable reliability mechanisms and

many failover and recovery mechanisms. It uses a simple

extensible data model that allows for online analytic

application.

 S S S S S

 C C C C C C

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 873

Fig -3: Flume service
 A source can be any data source, and Flume has many

predefined source adapters. A sink is the target of a

specific operation (and in Flume, among other paradigms

that use this term, the sink of one operation can be the

source for the next downstream operation). A decorator is

an operation on the stream that can transform the stream

in some manner, which could be to compress or

uncompress data, modify data by adding or removing

pieces of information.

Three types of sinks in Flume-

1. Collector Tier Event - This is where you would

land a flow (or possibly multiple flows joined

together) into an HDFS-formatted file system.

2. Agent Tier Event - This is used when you want the

sink to be the input source for another operation.

When you use these sinks, Flume will also ensure

the integrity of the flow by sending back

acknowledgments that data has actually arrived at

the sink.

3. Basic – This sink can be a text file, the console

display, a simple HDFS path, or a null bucket

where the data is simply deleted.
The purpose of Flume is to provide a distributed, reliable,

and available system for efficiently collecting, aggregating

and moving large amounts of log data from many different

sources to a centralized data store.

4.1. Flow Pipeline

Fig -4: Schematic showing logical components in a flow
[18]

The arrows represent the direction in which events travel

across the system. This also shows how flows can spread

out by having one source write the event out to multiple

channels.
A flow in Flume NG starts from the client. The client

transmits the event to it’s next hop destination. This

destination is an agent. More precisely, the destination is a

source operating within the agent. The source receiving

this event will then deliver it to one or more channels. The

channels that receive the event are drained by one or

more sinks operating within the same agent. If the sink is a

regular sink, it will forward the event to it’s next-hop

destination which will be another agent. If instead it is a

terminal sink, it will forward the event to it’s final

destination. Channels allow the decoupling of sources

from sinks using the familiar producer-consumer model of

data exchange. This allows sources and sinks to have

different performance and runtime characteristics and yet

be able to effectively use the physical resources available

to the system.

By configuring a source to deliver the event to more than

one channel, flows can fan-out to more than one

destination. This is illustrated in Figure 1 where the

source within the operating Agent writes the event out to

two channels – Channel 1 and Channel 2.

3. CONCLUSIONS

In this paper we discussed about the architectural
framework of Hadoop and to overcome the faults
tolerance in the HDFS that includes checkpoint and
recovery, data duplication. The Hadoop Distributed File
System (HDFS) is intended to store very huge data sets
consistently, and to stream those data sets at high
bandwidth to user applications.
ZooKeeper implement synchronization primitives,

coordinates distributed systems

The purpose of Flume is to provide a distributed, reliable,

and available system for efficiently collecting, aggregating

and moving large amounts of log data from many different

sources to a centralized data store.

REFERENCES

[1] Vishal S Patil, Pravin D. Soni, HADOOP SKELETON &
FAULT TOLERANCE IN HADOOP CLUSTERS, International
Journal of Application or Innovation in Engineering &
Management (IJAIEM), Volume 2, Issue 2, February 2013

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 09 | Dec-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 874

[2] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
Robert Chansler, The Hadoop Distributed File System,
http://pages.cs.wisc.edu/~akella/CS838/F15/838-
CloudPapers/hdfs.pdf

[3] Jeffrey Shafer, Scott Rixner, and Alan L. Cox, The
Hadoop Distributed Filesystem: Balancing Portability and
Performance,www.jeffshafer.com/publications/papers/sh
afer_ispass10.pdf

[4] Dhruba Borthakur, HDFS Architecture Guide.

[5] Vinod Kumar Vavilapallih Arun C Murthyh Chris
Douglasm Sharad Agarwali, Apache Hadoop YARN: Yet
Another Resource Negotiator,
https://www.sics.se/~amir/files/download/dic/2013%2
0-
%20Apache%20Hadoop%20YARN:%20Yet%20Another%
20Resource%20Negotiator%20(SoCC).pdf

[6] Ashish Sharma, Snehlata Vyas, Hadoop2 Yarn, IPASJ
International Journal of Computer Science (IIJCS), Volume
3, Issue 9, September 2015

[7] Mrudula varade, Vimla Jethani, Distributed MetaData
Management Scheme in HDFS, International Journal of
Scientific and Research Publications, Volume 3, Issue 5,
May 2013.

[8] Harshawardhan S. Bhosale, Prof. Devendra P.
Gadekar, A Review Paper on Big Data and Hadoop,
 International Journal of Scientific and Research
Publications, Volume 4, Issue 10, October 2014

[9] Jeffrey Dean and Sanjay Ghemawat, MapReduce:
Simpli_ed Data Processing on Large Clusters,
http://static.googleusercontent.com/media/research.goo
gle.com/en//archive/mapreduce-osdi04.pdf

[10] Howard Karlo__ Siddharth Suriy Sergei Vassilvitskiiz,
 A Model of Computation for MapReduce,
theory.stanford.edu/~sergei/papers/soda10-mrc.pdf

11. Anuradha G. Khade, Prof. Y. B. Gurav, Big Data
Analytics for Advertisement Promotion, International
Journal of Advanced Research in Computer Science and
Software Engineering, Volume 4, Issue 12, December 2014

[12]www.safaribooksonline.com/library/view/zookeeper
/9781449361297/ch01.html

[13]http://www.tomwheeler.com/publications/2012/zoo
keeper_tomwheeler_ll-20120607.pdf

[14] http://www.ibm.com/developerworks/library/bd-
zookeeper/

[15] Hadoop wiki - powered by. http://wiki.apache.org/

hadoop/PoweredBy.

[16]http://zookeeper.apache.org/doc/trunk/zookeeperO
ver.html

[17]http://www01.ibm.com/support/knowledgecenter/S
SPT3X_1.3.0/com.ibm.swg.im.infosphere.biginsights.doc/d
oc/c0057868.html

[18]https://www01.ibm.com/software/data/infosphere/
hadoop/flume/

[19]http://blog.cloudera.com/blog/2011/12/apache-
flume-architecture-of-flume-ng-2/

BIOGRAPHIES

Mrs. Smita S. Konda working as
Asst. Professor in AGPIT,
Solapur. She has completed her
BE in INFORMATION
TECHNOLOGY from WALCHAND
INSTITUTE OF TECHNOLOGY,
SOLAPUR from Solapur
University. She has completed
her M.Tech in Computer Science
and Engineering from JNTU
University,Hyderabad. She has 5
years of teaching experience.

Ms. Rohini S. More working as
Asst Professor in AGPIT,
Solapur. She has completed her
BE in Computer Science and
Engineering from Bharat Ratna
Indira Gandhi College of
Engineering, Solapur from
Solapur University. She has
completed her M.Tech in
Computer Science and
Engineering from JNTU
University, Hyderabad. She has
3.5 years of teaching experience.

http://pages.cs.wisc.edu/~akella/CS838/F15/838-CloudPapers/hdfs.pdf
http://pages.cs.wisc.edu/~akella/CS838/F15/838-CloudPapers/hdfs.pdf
https://www.sics.se/~amir/files/download/dic/2013
https://www.sics.se/~amir/files/download/dic/2013
http://www.safaribooksonline.com/library/view/zookeeper/9781449361297/ch01.html
http://www.safaribooksonline.com/library/view/zookeeper/9781449361297/ch01.html
http://www.tomwheeler.com/publications/2012/zookeeper_tomwheeler_ll-20120607.pdf
http://www.tomwheeler.com/publications/2012/zookeeper_tomwheeler_ll-20120607.pdf
http://www.ibm.com/developerworks/library/bd-zookeeper/
http://www.ibm.com/developerworks/library/bd-zookeeper/
http://zookeeper.apache.org/doc/trunk/zookeeperOver.html
http://zookeeper.apache.org/doc/trunk/zookeeperOver.html

