

Some new sets in Ideal topological spaces

RENU THOMAS¹, C.JANAKI²

1. Asst Prof, Department of Mathematics, Sree Narayara Guru College.K.G.Chavadi.Coimbatore-105, Tamil Nadu, India

2. Asst Prof, Department of Mathematics, L.R.G.Govt College for Women, Tirupur- 604, Tamil Nadu, India

ABSTRACT In this paper, some related generalized sets of τ * namely R*-I closed sets, W-R*-I closed sets, I-R* closed sets in Ideal topological space are introduced. The relationships between these sets are investigated and some of the properties are also studied.

KEYWORDS IR*-closed,R*-I closed,Weakly R*-I closed

1. INTRODUCTION

The notion of generalized closed sets in Ideal topological spaces was studied by Dontchev et. al [4] in 1999.Further closed sets like I_{rg} , I_{rw} were further developed by Navaneethakrishnan [10] and A.Vadivel [12] in 2009 and 2013 respectively. The main aim of this paper is to introduce some new related closed sets in the same space and study the relationships between them.

2. PRELIMINARIES

An ideal on a topological space (X, τ) is a non empty collection of subsets of X which satisfies the following properties (i) $A \in I$ and $B \subset A$ implies $B \in I$ (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space is a topological space with an ideal I on X and is denoted by (X, τ, I) . For a subset $A \subset X$, $A^*(\tau, I) = \{x \in X: A \cap U \notin I$ for every $U \in \tau$ (X, x) is called the local function of A with respect to I and τ . A Kuratowski's closure operator cl*(.) for a topology $\tau^*(I, \tau)$, called the *-topology, finer than τ is defined by cl*(A) = $A \cup A^*(I, \tau)$. Moreover (G, τ_G and $I_G = \{G \cap J, J \in I\}$ is an ideal topological space for (X, τ, I) and $G \subset X$.

Definition 2.1

A subset A of a space (X, au) is called

- 1. Regular open[10] if int(cl(A)) = A
- 2. Regular semi open [4] if there is a regular open set U such that $U \subset A \subset cl(U)$. Also X\A is regular semi open.

Definition 2.2[7] The intersection of all regular closed subset of (X, τ) containing A is called the regular closure of A and is denoted by rcl(A).

Definition 2.3 [7] A subset A of a space (X, τ) is called R*- closed if rcl $(A) \subset U$ whenever $A \subset U$ and U is regular semiopen in (X, τ) . We denote the set of all R*- closed sets in (X, τ) by R*-C(X).

Definition 2.4

A subset A of a space (X, au , I) is called

- 1. *-closed [8] if $A^* \subset A$
- 2. I-R closed [1] if A= cl*(int (A))
- 3. Regular-I closed [9] if A = (int(A))*
- 4. Pre^{*}_{*I*}-open [6] if A \subset Int*(cl(A))
- 5. $\operatorname{Pre}_{l}^{*}$ -closed[6] if cl*(int(A)) \subset A

3. R*-I-CLOSED SETS

Definition 3.1

The intersection of all regular –I closed sets containing A is called the regular-I-closure and is denoted by r_I^* cl (A).

Definition 3.2

A subset A of an ideal space (X, τ, I) is said to be R*-I closed if r_I^* cl (A) \subset U whenever A \subset U and U is regular semi open.

Definition 3.3

A subset A of a space (X, τ , I) is called R*-I open if X\A is R*-I closed.

Theorem 3.4: The union of two R*-I closed sets is R*-I closed.

Proof: Assume A and B are R*-I closed sets in (X, τ, I) .Let U be a regular semi open in X such that $A \cup B \subset U$. Then $A \subset U$ and $B \subset U$. Since A and B are R*-I closed sets,

 r_I^* cl (A) \subset U and r_I^* cl (B) \subset U respectively, hence r_I^* cl (A \cup B) \subset U. Therefore A \cup B is R*-I closed.

Remark 3.5: The finite intersection of two R*-I closed need not be R*-I closed.

Example 3.6: Let X = {a, b, c} $\tau = \{X, \varphi, \{a\}, \{c\}, \{a,c\}\}$ I = { $\varphi, \{a\}$ }

A= {a,c} and B= {b,c} are R*-I closed sets ,while $A \cap B=$ {c} is not an R*-I closed set. **Remark3.7:** Every regular-I closed set is R*-I closed while the converse is not true.

Example 3.8: Let X = {a, b, c, d} $\tau = \{X, \varphi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$

I = { ϕ ,{a}},regular-I-closed sets = { X, ϕ ,{b, c, d}}and R*-I-closed sets are

{X, φ , {a, b}, {a, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}

Remark3.9: Every regular- I closed set is I-R closed but not conversely.

Example 3.10: In the above example 3.8, I-R closed sets are {X, φ , {a},{b, c, d}. The set {a} is not regular-I-closed.

Theorem3.11: Let (X, τ , I) be an ideal space and A \subset X.

If A is R*-I closed, then r_I^* cl (A)\ A does not contains any nonempty regular semi open set.

Proof: Suppose A is R*-I closed set in (X, τ, I) . Also let F be a regular semi closed set contained in r_I^* cl (A) \A. It implies $F \subset r_I^*$ cl (A)\A $\cap X$ \A. Since $F \subset X$ \A,we have

A \subset X\F which is a regular semi open set. Therefore r_I^* cl

(A) \subset X\F and so F \subset X\ r₁^{*} cl (A).By hypothesis we have

 $F \subset r_I^*$ cl (A) and so $F = \varphi$. Hence r_I^* cl (A)\A contains no non empty regular semi open set.

Theorem 3.12: Let A be a R*-I closed set in an ideal space X such that $A \subset B \subset r_1^*$ cl (A), then B is also an R*-I closed set.

Proof: Let U be a regular semi open set of X, such that $B \subset U$. Then $A \subset B \subset U$. Since A is R*-I closed set, $r_1^* cl(A) \subset U$. Since $A \subset B \subset r_1^* cl(A) \subset U$, it implies $r_1^* cl(B) \subset r_1^* cl(R)$. Hence $r_1^* cl(B) \subset r_1^* cl(A) \subset U$. Hence B is an

4. I-R*-CLOSED SETS

Definition 4.1

R*-I closed set.

The intersection of all I-R closed sets containing A is called the I-R closure and is denoted by r_I^{**} cl (A).

Definition 4.2

A subset A of an ideal space (X, τ, I) is said to be I-R* closed if r_I^{**} cl(A) $\subset U$ whenever A $\subset U$ and U is regular semi open.

Definition 4.3 A subset A is called I-R*-open if $X \setminus A$ is I-R*-closed.

Result 4.4 The finite union of two I-R*-closed sets is I-R* closed set.

Proof: Let A and B be two I-R*-closed sets in X. Let U be regular semi open in X. We have r_I^{**} cl(A) \subset U, whenever

 $A \subset U$ and U is regular semi open and $r_I^{**} cl(B) \subset U$, whenever $B \subset U$ and U is regular semi open. Let $A \cup B \subset U$. Hence $r_I^{**} cl(A \cup B) \subset U$ whenever $A \cup B \subset U$ and U is regular semi open. Therefore $A \cup B$ is I-R* closed set.

Remark 4.5: The intersection of two I-R*-closed sets need not be I-R* closed set.

Example 4.6: Let $X = \{a, b, c, d\} \tau = \{X, \varphi, \{b\}, \{d\}, \{b, d\}\}$

 I = { φ ,{a}}. Then if

A = {b, d} B = {a,c,d}, A \cap B = {d} which is not I-R*-closed. **Theorem4.7**:In a topological space X, if X and φ are the only regular semi open sets, then every subset of X is I-R*-closed set.

Proof: Let X be a topological space and $\{X, \varphi\}$ be the regular semi open sets. Also let A be a subset of X. Suppose $A \neq \varphi$, then X is the only the only regular semi

open set containing A and so $r_I^{**} cl(A) \subset X$. Hence A is I-R* closed.

Remark 4.8: The converse of the above theorem need not be true as shown in the following example.

Example 4.9: Let X={a, b, c, d} τ = { X, φ , {a}, {c}, {a, c}, {b, c}, {a, b, c}, {b, c, d},

I = { ϕ ,{a}}.Then all subsets are I-R*-closed and the regular semi open set is

{X, φ , {a}, {b, c, d}.

Remark 4.10: Finite intersection of I-R* open sets is I-R* open.

Theorem 4.11: Let (X, τ, I) be an ideal space and $A \subset X$. If A is I-R* closed, then

 r_{I}^{**} cl(A) \ A does not contain any nonempty regular semi open set.

Proof: Suppose A is I-R* closed set in (X, τ, I) . Also let F be a regular semi closed set contained in r_{I}^{**} cl(A). It

implies $F \subset r_I^{**} \operatorname{cl}(A) \setminus A = r_I^{**} \operatorname{cl}(A) \cap X \setminus A$. Since $F \subset X \setminus A$, we have $A \subset X \setminus F$ which is a regular semi open set. Therefore $r_I^{**} \operatorname{cl}(A) \subset X \setminus F$ and so

 $F \subset X \setminus r_I^{**}$ cl(A) By hypothesis we have $F \subset r_I^{**}$ cl(A) and

so F = φ .Hence r_I^{**} cl(A)\ A contains no non empty regular semi open set.

Remark 4.12: The converse of the above theorem need not be true from the following example.

Example 4.13: Let X={a, b, c, d} *τ* = { X, *φ*, {a}, {c}, {a, c}, {a, b, c}, {a, c, d}},

I = { φ ,{a}}.Then RSO(X)= { X, φ ,{a},{c}{a, b},{a, d},{b, c},{c, d}{b, c, d},{a, b, d}. Let A = {c}, r_i^{**} cl (A) \A = {b, c, c}

 $d_{c} = \{b, d\}$. But A = {c} is not I-R*closed set.

Theorem 4.14: Let (X, τ, I) be an ideal topological space and $A \subset X$ be an I-R* closed set. Then $A \cup (X \setminus (r_I^{**} cl(A)))$ is a I-R* closed set in (X, τ, I) . **Proof:** Let A be I-R* closed set in (X, τ, I) . Suppose that U is a regular semi-open set such that A \cup $(X \setminus (r_I^{**} cl(A)) \subset$ U. We have

$$X \setminus U \subset X \setminus A \cup (X \setminus (r_{I}^{**} cl(A)))$$
$$= (X \setminus A) \cap r_{I}^{**} cl(A)$$
$$= r_{I}^{**} cl(A) \setminus A$$

Since X\U is regular semi-open set and A is a I-R* closed set, it follows from theorem 4.11 that X \ U = \Box . Hence X = U. Thus X is the only regular semi-open set containing AU(X\ (r_I^{**} cl(X)). Consequently, A U (X \ (r_I^{**} cl(X)) is I-R* closed set in (X, τ , I).

Theorem 4.15: Let (X, τ, I) be an ideal topological space and $A \subset X$ be a I-R* closed set. Then r_I^{**} cl(A)\A is a I-R* open set in (X, τ, I) .

Proof:

Since
$$X \setminus [r_1^{**} cl(A) \setminus A] = X \setminus [r_1^{**} cl(A) \cap A^c] =$$

 $X \cap [r_1^{**} cl(A) \cap A^c]^c$
 $= X \cap [(r_1^{**} cl(A))^c \cup A] =$
 $[X \cap (r_1^{**} cl(A))^c] \cup [X \cap A]$
 $= [X \cap (r_1^{**} cl(A))^c] \cup A =$
 $A \cup [X \cap (r_1^{**} cl(A))^c]$

 $= A \cup [X \setminus r_{I}^{**} cl(A)]$

By the previous theorem, A U [X \ r $\frac{**}{l}$ cl(A)] is I-R* closed set => X \ [r $_{l}^{**}$ cl(A) \ A] is

I- R* closed set => r_I^{**} cl(A)\A is I-R* open set in (X, τ , I).

Example 4.16: Let X = { a,b,c,d }, τ = { X, φ , {a}, {b}, {a,b}, {a,b,c} } and

I = { ϕ ,{a} }. Then I-R* closed sets = { X, ϕ ,{a}, {a,b}, {a,b,c}, {a,b,d}, {b,c,d}},

I-R* open sets = {X, φ , {a}, {c}, {d}, {c,d}, {b,c,d}} and

r $_{I}^{**}$ cl(A)\A ∈ I-R* open sets.

Theorem 4.17: Let (X, τ, I) be an ideal topological space. The following properties are equivalent: (i) Each subset of (X, τ, I) is a I-R* closed set (ii) A is pre $_{I}^{*}$ closed set for each regular semi open set A in X.

Proof: (1) => (2) Suppose that each subset of (X, τ, I) is a I-R* closed set. Let A be a regular semi-open set. Since A is I-R* closed set, we have cl* (int A) \subset A. Thus A is pre*¹ closed set.

(2) => (1) Let A be a subset of (X, τ , I) and U be a regular semi-open set such that A \subset U. By (2), we have r_{I}^{**} cl(A)

 \subset r^{**}_{*I*} cl(U) \subset U. Thus A is I-R* closed sets in (X, τ , I).

Theorem 4.18: Let (X, τ, I) be an ideal topological space. If A is a I-R* closed set and $A \subset U \subset r_{I}^{**}$ cl(A) then U is a I-R* closed set.

Proof: Let $U \subset K$ and K be a regular semi-open set in X. Since $A \subset K$ and A be a I-R* closed set, then $r_I^{**} cl(A) \subset K$. K. Since $U \subset r_I^{**} cl(A)$, then $r_I^{**} cl(U) \subset r_I^{**} cl(A) \subset K$.

Thus, r_{I}^{**} cl(U) \subset K and hence U is a I-R* closed set.

Lemma 4.19: [6] Let A be an open subset of a topological space (X, τ)

(i) If U is regular semi-open set in X, then so is U \cap A in the subspace (A, τ_A).

(ii) If B (\subset A) is regular semi-open in (A, τ_A) then there exists a regular semi-open set U in (X, τ) such that B = U \cap A.

Theorem 4.20: Let (X, τ, I) be an ideal topological space and $U \subset A \subset X$. If A is an open set in X and U is a I-R^{*} closed set in A, then U is I-R^{*} closed set in X.

Proof: Let K be a regular semi-open set in X and $U \subset K$. We have $U \subset K \cap A$. By lemma 4.19, $K \cap A$ is a regular semi-open set in A. Since U is an I-R* closed set in A, then

 r_{I}^{**} cl_A (U) \subset K \cap A. Also we have,

$$r_{I}^{**} cl(U) \subset r_{I}^{**} cl_{A}(U) \subset K \cap A \subset K \Longrightarrow r_{I}^{**} cl(U) \subset K$$

whenever

 $U \subset K$ and K is a regular semi-open set, Thus, U is I-R* closed set in (X, τ , I).

Theorem 4.21: Let (X, τ, I) be an ideal topological space and $U \subset A \subset X$. If A is a regular semi-open set in X and U is an I-R* closed set in X, then U is I-R* closed set in A.

Proof: Let $U \subset K$ and K be a regular semi-open set in A. By lemma 4.21 there exist a regular semi-open set L in X such that $K = L \cap A$. Since U is a I-R* closed set in X, then

 r_{I}^{**} cl(U) \subset K. Also we have r_{I}^{**} cl _A (U) = r_{I}^{**} cl (U) =

$$r_I^{**}$$
 cl (U) \cap A \subset K \cap A = K.

Thus r_{I}^{**} cl_A (U) \subset K. Hence U is I-R* closed set in A.

5. WEAKLY R*-I-CLOSED SETS

Definition 5.1

A subset A of an ideal space (X, τ , I) is said to be W-R*-I closed if (intA)* \subset U whenever A \subset U and U is regular semi open set in X.

Definition 5.2

A subset A of an ideal space (X, τ , I) is said to be W-R*-I open set if X/A is W-R*-I closed set.

Theorem 5.3

Let (X, τ , I) be an Ideal topological space $\;$ and A \subset X .Then the following properties are equivalent.

1. A is W-R*-I closed set

2. $cl^{*}(int(A)) \subset U$ whenever $A \subset U$ and U is regular semi open in X.

Proof: $1 \Rightarrow 2$ Let A be a W-R*-I closed set in (X, τ, I) . Suppose that $A \subset U$ and U is regular semi open in X. We know $(int(A))^* \subset U$ and that $int(A) \subset A \subset U$. Hence we have

 $(int(A))^* \cup int(A) \subset U$ which implies $cl^*(int(A)) \subset U$.

 $2 \Longrightarrow 1$ Let $cl^{(int(A))} \subset U$ whenever $A \subset U$ and U is regular semi open in X. It implies $(int(A))^{*} \cup int(A) \subset U$. That is $(int(A))^{*} \subset U$ whenever $A \subset U$ and U is regular semi open. Hence A is W-R*-I closed set.

Theorem 5.4:

Let (X, τ, I) be an ideal space and $A \subset X$. If A is open, regular semi open and W-R*-I closed, then A is * closed. Proof: Let A be open, regular semi open and W-R*-I closed in (X, τ, I) .Since A is open. Hence $cl^*(A) = cl^*(int(A)) \subset A$. Thus $A^* \subset A$ and hence A is *closed

Theorem 5.5 Let (X, τ, I) be an ideal space and $A \subset X$. If A is W- R*-I closed, then $(int(A))^* \setminus A$ contains no nonempty regular semi open set.

Proof: Let A is W- R*-I closed and suppose that F is regular semi open set such that $F \subset (int(A))^* \setminus A$. Since A is W- R*-I closed, X\F is regular open and $A \subset X \setminus F$, then $(int(A))^* \subset X \setminus F$. We have $F \subset X \setminus (int(A))^*$. Hence $F \subset (int(A))^* \cap X \setminus (int(A))^* = \varphi$. Thus $int(A))^* \setminus A$ contains

no nonempty regular semi open set.

Theorem 5.6:

Let (X, τ, I) be an ideal space and $A \subset X$. If A is W-R*-I closed set, then $Cl^{*}(Int(A))\setminus A$ contains no non empty regular semi closed set.

Proof: Suppose U is a regular semi closed set such that $U \subset Cl^{(Int(A))}A$. But $Cl^{(Int(A))}A$ =

 $(Int(A))^* \cup (Int(A))$. The result follows from theorem 5.5.

Remark 5.7: The converse of the above theorem is not true in general as shown in the following example.

Example 5.8:Let X= {a,b,c,d}

 $\tau = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\} I = \{\varphi, \{a\}\}.Let A = \{a\}, then cl*(int(A)) \land does not contain any non empty regular semi open set but A is not W-R*-I closed set.$

Theorem 5.9:

Let A be a W-R*-I closed set in an ideal space X such that $A \subset B \subset cl^*(int(A))$, then B is also an W-R*-I closed set. Proof:

Let U be a regular semi open set of X, such that $B \subset U$. Then $A \subset B \subset U$. Since A is W-R*-I closed set, $cl^{(int(A))} \subset U$. Since $A \subset B \subset cl^{(int(A))} \subset U$, it implies $cl^{(int(B))} \subset cl^{(int(A))} \subset U$. Hence B is a W-R*-I closed set. **Corollary 5.10:** Let (X, τ, I) be an ideal topological space. If G is a W-R*-I closed set and an open set, then $cl^*(G)$ is a W-R*-I closed set.

Proof: Let G be open and W-R*-I closed in (X, τ, I) .We have $G \subset cl^*(G) \subset cl^*(int(G))$.Hence by theorem 5.9, $cl^*(G)$ is a W-R*-I closed set.

Remark 5.11: (1) The intersection of two W-R*-I closed sets in an ideal topological space need not be a W-R*-I closed set.

(2) The union of two W-R*-I closed sets in an ideal topological space need not be a W-R*-I closed set.

Example 5.12: Let X= {a,b,c,d} τ ={X, φ ,{a},{c,d},{a,c,d}} I={ φ ,{a}}.A={a,c,d} and B= {b,c,d} are W-R*-I closed sets but A \cap B={c,d} is not an W-R*-I closed set.

Example 5.13: Let X= {a,b,c,d} τ ={X, φ , {a},{c,d},{a,c,d}} I={ φ ,{a}}.{c} and {d} are W-R*-I closed sets but A \cup B={c,d} is not an W-R*-I closed set.

Theorem 5.14: Let (X, τ, I) be an ideal space and $A \subset X$. If A is nowhere dense in X, Then A is a W-R*-I closed set. Proof: Let A be a nowhere dense set in X. Since int(A) \subset int(cl(A))= φ , then

int (A)= φ .Hence cl*(int(A)) = φ .Thus A is a W-R*-I closed set.

Remark 5.15: The converse of the theorem need not be true as shown in the following example.

Example 5.16: Let X= {a,b,c} τ ={X, φ , {a},{b},{a,b}} I={ φ ,{a}}.Let A= {b,c}.Then A is W-R*-I closed set but it is not a nowhere dense set.

Theorem 5.17: Let (X, τ, I) be an ideal space and $H \subset G \subset X$. If G is an open set in X and H is a W-R*-I closed set in G, then H is a W-R*-I closed set in X.

Proof: Let K be a regular semi open set in X and $H \subset K$. We have $H \subset K \cap G$. By Lemma 4.19 $K \cap G$ is a regular semi open set in G. Since H is a W-R*-I closed set in G, $Cl_G*(Int_G (H)) \subset K \cap G$. Also, $cl^*(int(H)) \subset cl_G*(int(H)) \subset cl_G*(int_G (H)) \subset K \cap G \subset K$. Hence $Cl^*(Int (H)) \subset K$. Thus H is a W-R*-I closed set in X.

Theorem 5.18 Let (X, τ, I) be an ideal space and $H \subset G \subset X$. If G is a regular semi open set in X and H is a W-R*-I closed set in G, then H is a W-R*-I closed set in G. Proof: Let $H \subset K$ and K be a regular semi open set in G. By lemma 4.16 there exist a regular semi open set L in X such that $K = L \cap G$. Since H is W-R*-I closed set in X,cl*(int (H)) $\subset K$. Also we have $cl_G*(int_G (H)) = cl_G*(int (H)) = cl^*(int (H)) \cap G \subset$

 $K \cap G = K$. Thus $cl_G^*(int_G (H)) \subset K$. Hence H is a W-R*-I closed set in G.

Theorem 5.19 Let (X, τ, I) be an ideal space and $G \subset X$. If G is a W-R*-I closed set, the following properties are equivalent:

- 1. G is pre $\frac{1}{7}$ -closed,
- 2. Cl*(int(G))\G is regular semi closed,
- 3. (Int(G))*\G is regular semi closed.

Proof:1 \Rightarrow 2: Let G is pre^{*}_I-closed. We have Cl*(int(G)) \subset G. Then Cl*(int(G))\G= φ Therefore Cl*(int(G))\G is regular semi closed.

 $2 \Rightarrow 1$: Let Cl*(int(G))\G is regular semi closed. Since G is a W-R*-I closed set,then by theorem 5.6,Cl*(int(G))\G

= φ .Hence we have Cl*(int(G)) \subset G.Thus G is pre^{*}₁-closed.

 $2 \Leftrightarrow 3:$ It follows easily since Cl*(int(G))\G = (Int(G))*\G.

Theorem 5.20: Let (X, τ, I) be an ideal space and $G \subset X$. Then G is a W-R*-I open set if and only if $H \subset int^*(cl(G))$ whenever $H \subset G$ and H is regular semi closed set.

Proof: Let H is regular semi closed set in X and $H \subseteq G$. It follows that X\H is regular semi open and X\G \subseteq X\H. Since X\G is a W-R*-I closed set, cl*(int(X\G)) \subseteq X\H. We have X\ int*(cl(G)) \subseteq X\H. Thus $H \subseteq$ int*(cl(G)).

Conversely, let K be a regular semi open set in X and $X \subseteq K$. Since X K is a regular semi closed set such that $X \subseteq G$, then X K \subset int*(cl(G)).We have X \int*(cl(G))= cl*(int(X \subseteq)) $\subset K$. Thus X G is W-R*-I closed set .Hence G is W-R*-I open set in (X, τ , I).

Theorem 5.21: Let (X, τ, I) be an ideal space and $G \subset X$. If G is a W-R*-I closed set, then $Cl^{(Int(G))}G$ is a W-R*-I open set in (X, τ, I) .

Proof: Let G be a W-R*-I closed set in (X, τ, I) .Suppose H is a regular semi closed set such that $H \subset Cl^*(int (G)) \setminus G$. Since G is W-R*-I closed set, it follows from theorem 5.6 that $H = \varphi$.Thus, we have $H \subset Int^*(Cl(Cl^*(Int(G)) \setminus G))$.It follows from theorem 5.20 that $Cl^*(int (G)) \setminus G$ is a W-R*-I open set in (X, τ, I) .

Theorem 5.22: Let (X, τ, I) be an ideal topological space. If G is W-R*-I open set in

(X, τ , I) and int*(cl(G)) \subset H \subset G, then H is W-R*-I open set.

Proof; Let G be is W-R*-I open set in (X, τ, I) and Int*(cl(G)) \subset H \subset G. Also let K be regular semi closed. Since G is W-R*-I open set, from theorem 5.20 K \subset Int*(cl(G)) \subset Int*(cl(H)).Hence by theorem 5.20 H is W-R*-I open set.

Corollary 5.23: Let (X, τ, I) be an ideal topological space and $G \subset X$. If G is W-R*-I open set in (X, τ, I) and closed set ,then Int*(G) is W-R*-I open set.

Proof: Let G be a W-R*-I open set and closed set in

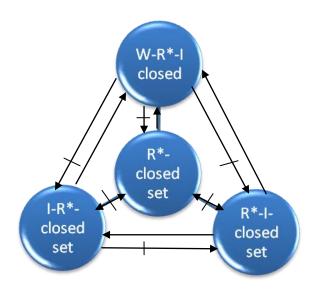
(X, τ , I).Then Int*(Cl(G))=Int*(G) \subset Int*(G) \subset G. Thus by theorem 5.22, Int*(G) is W-R*-I open set in (X, τ , I).

Theorem 5.24: Let (X, τ, I) be an ideal topological space .If $G \subset X$ is a W-R*-I open set, then H=X whenever H is regular semi open and Int*(Cl(G)) \cup (X\G) \subset H. Proof: Let H is regular semi open and Int*(Cl(G)) \cup (X\G) \subset H. We have X\H \subset X\(Int*(Cl(G)) \cup (X\G))

 $= (X \setminus Int^*(Cl(G))) \cap G.$

= $Cl^{(Int(X\backslash G))}(X\backslash G)$.Since X\H is regular semi closed set and X\G is W-R*-I closed set ,it follows from theorem 5.6 that X\H = φ . Thus we have H =X.

Figure 5.25: The above relation between sets is represented below.



Example 5.26: Let X= {a,b,c,d}

 $\tau = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}\} I = \{\varphi, \{a\}\}.$

R*-I closed sets are

{X, φ ,{a,b},{a,c},{b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d}} I-R*-closed sets are

 $X, \varphi a$, a,b, a,c, b,d, c,d, a,b,c, a,b,d, a,c,d, b,c,dW-R*-I closed sets are

 ${X, \varphi, {a}, {c}, {d}, {a,b}, {a,c}, {a,d}, {b,d}, {c,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}}.$

R*-closed sets are

{X, φ ,{d},{a,b},{a,d},{b,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d}}. W-R*-I closed sets do not imply neither I-R* closed sets nor R*-I closed sets.IR*-closed set does not imply R*-I closed. W-R*-I closed sets does not imply R* closed sets. I-R* closed sets and R*-I closed sets are independent with R*-closed sets.

Example 5.27:Let X= {a,b,c,d} $\tau = \{X, \varphi, \{b\}, \{d\}, \{b,d\}\}$

 $I=\{ \varphi, \{a\}\}.$

W-R*-I closed sets are

{X, φ , {a}, {a,c}, {b,d}, {c,d}, {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}}.

R*-closed sets are

{X, φ ,{a,c},{b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d}}

W-R*-I closed sets does not imply R*-closed sets.

References

- 1. A. Acikgoz,S. Yuksel,some new sets and decompositions of A_{I-R}-continuity,-I continuity via idealization ,Acta Math Hungar.114(2007)79-89.
- 2. J. Antony Rex Rodrigo, O. Ravi and A. Naliniramalatha, g closed sets in Ideal topological space, vol 17(2011), no. 3, pp. 274-280.
- 3. Chandran Shattopadhyay, Dense sets, Nowhere Dense sets and An Ideal in Generalized closure spaces, 59(2007), 181-188.
- J. Dontchev, On generalized semi pre open sets. Mem. Fac. Sci. Kochi. Univ. Ser. A. Math 16(1995),35-48
- 5. J. Dontchev, M.Ganster, T.Noiri, Unified approach of Generalized closed sets via topological ideals, Math.Japonica 49(1999)395-401
- 6. Erdal Ekici, Sena Ozen, A generalized class of τ^* in ideal spaces, Filomat 27:4(2013), 529-535.
- C.Janaki and Renu Thomas, R* -closed sets in topological spaces, International Journal of Mathematical Archive – 3[8], 2012, 3067-3074.
- 8. D.Jankovic, T.R.Hamlett, New topologies from old via ideals, Amer. Math. 97 (1990) 295-310.
- A.Keskin,T.Noiri & S.Yuksel,Idealization of a decomposition Theorem,Acta.Math.Hungar.102(40(2004),269-277
- 10. M.Navaneethakrishnan,D & D.Sivaraj,regular generalized closed sets in ideal topological spaces,Journal of Advanced Research in Pure mathematics, vol 2,issue 3 (2010),24-33.

- 11. M.Stone,application of Boolean rings to general topology, trans Amer.Math.soc.41(1937),374-481.
- 12. A.Vadivel, Mohanarao Navuluri, regular weakly closed sets in ideal topological spaces,Intr.J. of Pure and Applied Mathematics Vol 86,4(2013)607-619.