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Abstract - State of charge (SOC) estimation is one of 

the essential segments of hybrid electrical vehicles 

(HEV). By monitoring of SOC, we can optimize the 

consumption of fuel and decrease the pollution of air, in 

HEV. In this works considers the state of charge (SOC) 

estimation problem for lead-acid batteries for use in 

HEV. In this paper, the online state of charge estimation 

is worked using a locally linear model tree (LOLIMOT) 

which is a Nero-fuzzy network. The training data of 

LOLIMOT contain measured voltage, current and SOC 

data in different temperature in which voltage, current 

and temperature are used as inputs and SOC is output. 

In this paper, the SOC estimation results using LOLIMOT 

is compared with the results of ANFIS [1]. 
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1. INTRODUCTION  

In HEV, a key parameter is the state of charge of the 

battery that is a measure of the amount of electrical 

energy stored in it. It is analogous to a fuel gauge on a 

conventional internal combustion (IC) car. To define the 

state of charge, consider a completely discharged battery. 

With ( )bI t  the charging current, the amount of charge 

delivered to the battery is
0

( )
t

b
t

I d  . Thus, the total of 

charge that the battery can hold is 
0
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  and the 

state of charge (SOC) of the battery is given by 
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Typically, it is desired that the state of charge of the 

battery be kept within appropriate limits, for example 

20% < SOC (%) < 95%. As a consequence, it is essential to 

be able to estimate the state of charge of the battery to 

maintain the state of charge within safe limits. Estimating 

the battery state of charge (SOC) is not an easy task 

because the SOC depends on many factors such as 

temperature, battery capacitance and internal resistance.  

There are many different techniques of battery SOC 

estimation, which are summarized in the recent paper [3], 

and each of them has its most suitable field due to complex 

nonlinear behavior of battery. The reference [3] points out 

that at present, the most widely used technique for all 

systems is Ah counting because it can be easily 

understood, implemented and it gives satisfyingly 

accurate results. But actually a starting point SOC is 

required for the method. Due to complex nonlinear 

behavior of battery, it is quite difficult for most existed 

mathematical model to obtain satisfactory prediction 

accuracy. Therefore traditional methods of battery 

management systems are incapable for SOC estimation of 

HEV Batteries. 

Artificial neural network (ANN) which is able to predict 

SOC online if trained before use, can be implemented for 

any battery and battery system, and it is a new promising 

method. Recently, soft computing techniques in the form 

of adaptive neuro-fuzzy inference system known as ANFIS 

begin to be utilized to estimate SOC under different 

operation condition such as constant current discharging 

(CCD) and random current discharging (RCD) [1]. 

In this paper is used the new neuro-fuzzy network 

(LOLIMOT) for SOC estimation of batteries in HEV. The 

schematic of LOLIMOT SOC estimator is pictured in Fig -1 

where V, I, T, is as inputs of LOLIMOT estimator and SOC is 

as output of LOLIMOT estimator. For implementation of 

this estimator, we can sense V (terminal voltage of 

battery), I (load current) and T (combination of 

environment and battery temperature) by sensors when 

HEV is working.  

2. STRUCTURE OF LOLIMOT 

In this paper, a new algorithm (LOLIMOT) for nonlinear 

dynamic system identification (battery system) with local 

linear models is used [7]. The local linear model tree 
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(LOLIMOT) is based on the idea to approximate a 

nonlinear function with piece-wise linear models. 

 
Fig -1: The schematic of LOLIMOT SOC estimator 

The algorithm has an outer loop (upper level) that 

determines the input partitions (structure) where the 

local linear models are valid and an inner loop (lower 

level) that estimates the parameters of those local linear 

models. However, the partitions where the linear models 

are valid are not crisp but fuzzy, i.e. the local linear models 

are interpolated by weighting functions. In this paper 

normalized Gaussian weighting functions are applied. The 

LOLIMOT output y is calculated by summing up the 

contributions of all M linear models (hyper-planes) 
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where ijw  are the parameters of the ith linear regression 

model, & x  is the input vector and i  is the normalized 

Gaussian weighting function for the ith model with centre 

coordinates ic and standard deviations i . 
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Equation (2) can be interpreted as a Sugeno-Takagi fuzzy 

system with Gaussian membership functions and product 

operator as t-norm. It is also equivalent to the local model 

network based on a radial basis function network in and 

therefore an extension to radial basis function networks. 

Assume the weighting functions would have been already 

determined. Then the parameters of each linear model are 

estimated separately (local estimation) by a weighted 

least squares technique. With the data matrix X (each row 

represents one measurement of Tx  at time instant k, i.e. 

T
kx . The diagonal weighting matrix 

iQ  (each entry 
kq  is 

the weighting function value of the corresponding 

data T
kx ) and desired outputs y the optimal parameters % 

of the ith model are 

 
1

T T
i i iw X Q X X Q y


                                                             (4) 

The overlapping of the weighting functions is ignored in 

this local estimation approach. This may lead to 

interpolation errors that grow with increasing standard 

deviations of the weighting functions. On the other hand 

local estimation is very fast and robust. Instead of 

optimizing all M(n+l) parameters in (2) globally, only a 

(n+l) parameter estimation is performed M times. Since an 

LS estimation has cubic complexity (e.g. matrix inversion 

with singular value decomposition) the global estimation 

approach is of O(M3) while the local estimation is of O(M). 

Furthermore, it is shown in that local estimation is more 

robust in the case of small noisy data sets, since it forces 

the linear models to represent the local surface of the 

unknown function and therefore avoids compensation 

effects like the "balancing of weights".  

For optimization of each model all data are taken into 

account. The data points are weighted with the 

corresponding weighting function value. This is consistent 

with the fuzzy logic point of view, where the weighting 

function value is the degree of rule fulfillment that the 

corresponding model is true. This means that the closer 

the points are to the weighting function's centre the more 

significant they are for the estimation of the hyper-plane. 

Therefore each weighting function centre can be 

interpreted as an operating point for the corresponding 

linear model. 

The following algorithm exploits ideas from other tree 

construction algorithms like CART, basis function trees 

and MARS to determine the centers and standard 

deviations of the weighting functions. The LOLIMOT 

algorithm partitions the input space in hyper-rectangles. 

Each local linear model belongs to one hyper-rectangle in 

which centre the weighting function is placed. The 

standard deviations are set proportional to the size of the 

hyper rectangle. This makes the size of the validity region 

of a local linear model proportional to its hyper-rectangle 

extension. A model may be valid over a wide operating 

range of one input variable but only in a small area of 

another one. Fig -2 illustrates position and orientation of 
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the non-normalized Gaussians, where the ellipses 

characterize the contours and the crosses mark the 

centers. 

 
Fig -2: Possible partitioning of the input space with 

contour of the non-normalized weighting functions 

The algorithm is the following: 

1. Set the first hyper-rectangle in such a way that is 
contains all data points. Estimate a global linear 
model 0 1 1 ... n ny w w x w x    . 

2. For all input dimensions j := l...n: 
2a. cut the hyper-rectangle into two halves along            

dimension j. 

2b. Estimate local linear models for each half. 

2c. calculate the global approximation error 

(output error) for the model with this cut. 

3. Determine which cut has led to the smallest 
approximation error. 

4. Perform this cut. Place a weighting function 
within each centre of both hyper-rectangles. Set 
standard deviations of both weighting functions 
proportional to the extension of the hyper-
rectangle in each dimension. Apply the 
corresponding estimated local linear models 
(from 2b). 

5. Calculate the local error measures J on basis of a 
parallel running model for each hyper-rectangle. 

6. Choose the hyper-rectangle with the largest local 
error measure J. 

7. If the global approximation error on a parallel 
model (output error) is too large go to step 2. 

8. Convergence. Stop. 
 
Fig -3a shows six iterations of the LOLIMOT algorithm for 

a two dimensional input space (n=2). It can be 

represented in a tree structure, see Fig -3b. 

At each iteration, the worst local linear model is 

subdivided into two new ones. The cuts in all dimensions 

are tested and the one with the highest performance 

improvement is chosen. Note that the evaluation of the 

model's performance involves generalization since it is 

run with a parallel model while parameter tuning applies a 

series-parallel model. In order to control the complexity of 

the model and generate more parsimonious models a 

pruning step can be included between step 4 and 5. That 

pruning step 4 can merge two models if the loss of 

accuracy due to this merging is smaller than the gain of 

accuracy from the previous cut. Another very important 

extension of this algorithm is to allow different input 

spaces for the weighting functions in (4) and the local 

linear models in (2). The input space of the weighting 

functions should contain only those variables that may 

influence the nonlinear process behavior, while the input 

space of the local linear models should include all 

variables on which the process dynamics may depend on. 

By choosing the variables of these input spaces prior 

knowledge can be incorporated to speed up the training.  

 
Fig -3a: Six iterations of LOLIMOT 

 

Fig -3b: Tree structure for Fig -3a 

3. LOLIMOT SOC ESTIMATOR AND ITS RESULTS 

LOLIMOT network is trained with experimental data 

(voltage, current, temperature and SOC) of lead acid 

battery that used in HEV. For training of this LOLIMOT 

network, first we specified the optimal number of neurons 

with using of computing of square error summation for 
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different number of neurons (Fig -3). According to Fig -3, 

the number of the optimal neuron obtained 14 neurons. 

Then we trained network for experimental data by using 

LOLIMOT algorithm. Results of this training are shown in 

Fig4. For these experimental data, the training error with 

the optimal number of neuron is 3.0218 % (Fig -4). 
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Fig -4:The square error summation according the Number 

of neurons 
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Fig -5: Estmated SOC and training error for LOLIMOT SOC 

estimator 

For testing of this trained LOLIMOT, we used 214 data that 

the error is 7.4823%. the error of test data is bigger than 

the error of training data because the number of training 

data is bigger than the number of test data. Results of 

testing of LOLIMOT network are shown Fig -5. In Fig -7 

actual values and estimated values for test data is shown. 
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Fig -6: Error and output of LOLIMOT network for test data 
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Fig -7: Actual values and estimated values for test data 

4. COMPARISON OF LOLIMOT AND ANFIS SOC 
ESTIMATORS 

For the same experimental data, we use from ANFIS GUI in 

MATLAB software for estimation of SOC [1]. Used ANFIS 

network in this paper, contains three member functions 

for each the inputs therefore the ANFIS network contains 

27 rules that it is rather than the neurons of LOLOMOT 

network (14 neurons). Error of ANFIS network training is 

shown in Fig8.Training error for ANFIS network is 

4.6829% for the same data. Training of ANFIS estimator 

for the same data is shown in Fig -9 and the results of test 

data for ANFIS network is shown in Fig -10. The error of 

ANFIS network for test data is 15.7438% that is bigger 

than the error of test data in LOLIMOT network. Therefore 

the LOLIMOT network is better than ANFIS network for 

SOC estimation of lead acid battery in HEV. 
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Fig -8: Error of ANFIS network training 

0 200 400 600 800 1000 1200

-20

0

20

40

60

80

100

samples

S
ta

te
 o

f 
C

h
a
rg

e
 (

S
o
C

)%

estimated

actual

 
Fig -9: Training of ANFIS estimator for the same data 
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Fig -10: Results of test data for ANFIS network 

5. CONCLUSION 

In this paper, a new online soc estimator for lead acid 

batteries is designed and simulated. For design of this 

estimator, LOLIMOT is used. Results of the LOLIMOT soc 

estimator compared with ANFIS soc estimator and 

according to error and number of neuron in the LOLIMOT 

soc estimator, we find out this estimator is better than 

ANFIS estimator. 
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