

© 2015, IRJET | ISO 9001:2008 Certified Journal | Page 1706

SUPPORTIVE SQL INTERFACE FOR WIRELESS AD HOC NETWORKS

Pabboju Ramesh1

1Associate Professor, Department of C.S.E.

Mahaveer Institute of Science and Technology, Bandlaguda, Hyderabad – 59
---***---

Abstract-We express the database community's impression
of a a SQL Interface for data aggregation, which can be
applied to ad-hoc wireless sensor networks. Here, we are
showing group aggregations can be effectively processed
where they reduce data duplication. Network Traffic. Based
on these queries, we shown SQL Interface that can execute
queries within ad-hoc sensor networks.

Keywords: optimization, SQL-Interface, Ad hoc networks.

I.INTRODUCTION

At UC Berkeley,researchers have developed small sensor
devices called motes, and an operating system, called Tiny
OS, that is especially suited to running on them. Motes are
equipped with a radio, a processor, and a suite of sensors.
TinyOSmakes it possible to deploy ad-hoc networks of
sensors that can locate each other and route data without
any a priori knowledge of network topology.

As various groups around the country have begun to deploy
large networks of sensors, a need has arisen for tools to
collect and query data from these networks. Of particular
interest are aggregates operations which summarize current
sensor values in some or all of a sensor networks. For
example given a dense network of thousands of sensors
querying temperature, users want to know temperature
patters in relatively large regions encompassing tens of
sensors individual sensor readings are of little value.

Sensor networks are limited in external bandwidth, i.e. how
much data they can deliver to an outside system. In many
cases the externally available bandwidth is a small fraction
of the aggregate internal bandwidth. Thus computing
aggregates in network is also attractive from a network
performance and longevity standpoint: extracting all data
over all time from all sensors will consume large amounts of
time and power as each individual sensor’s data is
independently routed through the network. Previous studies
have shown that aggregation dramatically reduces the
amount of data routed through the network, increasing
throughput and extending the life of battery powered sensor
networks as less load is placed on power hungry radios.

In this paper, we discuss the challenges associated with
implementing the five basic database aggregated with
grouping in adhoc networks of sensors. We show how our
generic approach leads to a significant power savings.

Further, We show that sensor network queries can be
structured as time series of aggregates, and how such
queries adapt to the changing network structure. We have
implemented earlyversions of these techniques and are in
the process of experimentally validation them.

1.1MOTES

These devices are equipped with a 4Mhz Atmel
microprocessor with 512 bytes of RAM and 8KB of
codespace,a 917 MHz RFM radio running at 10 KB OF CODE
SPACE, A 917 mhz rfm RADIO RUNNING AT 10KB/S, AND
32KBEPROM. Current temperature options include light,
temperature, magnetic field, acceleration, vibration, sound,
power. The effective lifetime of the sensor is determined by
its power supply. In, Motes we will use Tuny OS. TinyOS
provides a number of services like simplifying the programs,
process the capture data, transmitting radio messages over
radio.

1.2 Ad-Hoc Sensor Networks.

Messages in the current generation of TinyOS area fixed size
preprogrammed into sensors, by default, 30 byte messages
are used. Each message type has a message id that
distinguishes it fromother types of messages. Sensor
programmers write message id specific handlers that are
invoked by Tiny OS when a message of the appropriate id is
heard on the radio. Each sensor has a unique sensor id that
distinguishes it from other sensors. All messages specify
their recipient, allowing sensors to ignore messages not
intended for them, although non-broadcast messages must
still be received by all sensors within range –unintended
recipients simply drop messages not addressed to them.

Given this brief primer on wireless sensor communication,
we now show how sensors route data. The technique we
adopt is to build a routing tree. We appoint one sensor to be
the root. The root is the point from which the routing tree
will be built, and upon which aggregated data will converge.
Thus, the root is typically the sensor that interfaces the
querying user to the rest of the network. The root broadcasts
a message asking sensors to organize into a routing tree; in
that message it specifies its own id and its level, or distance
from the root, which is zero. Any sensor that hears this
messages assigns its own level to be the level in the message
plus one, if its current level is not already less than or equal
to the level in the message. It also chooses the sender of the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 08 | Nov -2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET | ISO 9001:2008 Certified Journal | Page 1707

message as its parent, through which it will route messages
to the root. Each of these sensors then rebroadcasts the
routing message, inserting their own ids and levels. The
routing, message floods down the tree in this fashion, with
each node rebroadcasting the message until all nodes have
been assigned a level and a parent. Nodes that hear multiple
parents choose one arbitrarily, although we will discuss
approaches in below where multiple parents can be used to
improve the quality of aggregates. These routing messages
are periodically broadcast from the root, so that the process
of topology discovery goes on continuously. This constant
topology maintenance makes it relatively easy to adapt to
network changes caused by mobility of certain nodes, or to
the addition or deletion of sensors; each sensor simply looks
at the history of received routing messages, and chooses the
“best” parent, while ensuring that no routing cycles are
created with that decision.

This approach makes it possible to efficiently route data
towards the root. When a sensor wishes to send a message to
the root, it sends the message to its parents, which in turn
forwards the message on to its parent, and so on, eventually
reaching the root. This approach doesn’t address point-to-
point routing; however, for our purposes, flooding
aggregation requests and routing replies up the tree to the
root is sufficient., as data is routed towards the root, it can be
combined with data from other sensors to efficiently
combine routing and aggregation. First, however we
describe how aggregates are expressed in database systems.

II. AGGREGATION IN DATABASE SYSTEMS

Aggregation in SQL based database systems is definedby an
aggregate function and a grouping predicate. The aggregate
function specifies how a set of values should be combined
tocompute an aggregate; the standard set of SQL aggregate
functions is COUNT, MIN, MAX, AVERAGE, and SUM. These
compute the obvious functions; for example, the SQ
statements.

SELECT AVERAGE FROM ALL_sensors

Computes the average temperature from some table sensors,
which represents a set of sensor readings that have been
read into the system. Similarly, the COUNT functions
compute minimal and maximal values and SUM calculates
the total of all values. Additionally, most database systems
allow user-defined functions that specify more complex
aggregates than the five listed above.

Grouping is also a standard feature of database systems.
Rater than merely computing a single aggregate value over
the entire set of data values, a grouping predicate partitions
the values into groups based on some attribute. For example,
the query;

SELECT TRUNC, DATA_AVERAGE
FROM ALL sensors
GROUP BY TRUNC
HAVING DATA_AVERAGE> 60

Partition sensor readings into groups according to their
temperature reading and computes the average light reading
within each group. The HAVING clause excludes groups
whose average light reading are less than or equal to 60.

In the rest of this paper, we discuss the challenges associated
with implementing the five basic aggregates with grouping
in ad-hoc networks of Tiny OS sensors. We start by
considering a single aggregate being computed at a time, and
then argue that often users are interested in viewing
aggregates as sequences of changing values over time.
Throughout this work, we will assume the user is stationed
at a desktop- class PC with ample memory. Despite the
simple appearances of this architecture, there are a number
of difficulties presented.

III. GENERIC AGGREGATION TECHNIQUES

 A native implementation of sensor network aggregation
would be to use a centralized, server-based approach where
all sensor readings are sent to the host PC, which then
computes the aggregates. However, as was shown in a
distributed, in wireless network approach where aggregates
are partially or fully computed by the sensors themselves as
readings are routed through the network towards the host-
PC can be considerably more efficient. In this section, we
focus on the in network approach, because, if properly
implemented, it has the potential to be both lower latency
and lower power than the server based approach.

To illustrate the potential advantages of the in network
approach; consider the simple example of computing an
aggregate over a group of sensors arranged as shown in
figure1. Dotted lines represent connection between sensors;
solid lines represent the routing tree imposed on top of this
graph to allow sensors to propagate data to the root along a
single path. In the centralized approach, each sensor value
mist be routed to the root of the network; for a node at depth
m, this requires n-1 messages to be transmitted per sensor.
The sensors in figure 2 have been labeled with their distance
from the root; summing these numbers gives a total sixteen
messages required routing all aggregation information to the
root. Combine their own readings with the readings of their
reading to their parents. Intermediate nodes combines their
own reading with the reading of their children via the
aggregation function f and propagate the partial aggregate,
along with any extra data required to update the aggregate,
up the tree.

The amount of data transmitted in this solution depends on
the aggregate. Consider the AVERAGE function. at each
intermediate node n, the sum and count of all children’s

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 08 | Nov -2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET | ISO 9001:2008 Certified Journal | Page 1708

sensor readings are needed to compute the assume that, in
the case of AVERAGE, both pieces of information will easily
fit into a single 30 byte message. Thus a total of 5 messages
needed to be be sent for the average function. IN the case of
the other standard SQL aggregates, no additional state is
required: COUNT, MIN, MAX and SUM can be computed by a
parent node given sensor or partial aggregate values at all of
the child nodes.

Aggregates can be expressed as an aggragte function f over
the sets a & b such that

f(a U b) = g(f(a), f(b))

IV. INJECTING A QUERY

Computing Aggregation consist of two phases: a propagation
phase in which aggregations are pushed down into sensor
networks, and an aggregation phase, where the aggregate
values prop aged from the children to parents. The basic
approach to propagation works just like the network
discovery algorithm, except that leaf nodes that propagates
to their parents. Thus, when a sensor p receives an aggregate
a, either from another sensor or from the user, it transmit a
and begins listening. If p has any children, it will hear those
children re-transit a to their children, and will know it is not
a leaf. If, after some time interval t, p has heard no children, it
concludes is is a leaf and transmit its current sensor value up
the routing tree. If p has children, it assumes they will al
report within time t, and so after time t it computes the value
of applied to its own value and the values of its children and
forwards this partial aggregate to its parent.

IV. STREAMING AGGREGATES

Sensor networks are inherently unreliable: individual radio
transmission can fail, nodes can move, and so on. Thus, it is
very hard to guarantee that a significant portion of a sensor
network was not detached during a particular aggregate
computation. Consider, for example, what happens when a
sensor, p, broadcast a and its only child c, somehow misses a
message P will never hear c rebroadcast, and will assume
that it has no children and that it should forward only its
own sensor value. The entire network below p is thus
excluded from the aggregation computation, and the end
result is probably is in correct. Indeed, when any sub tree of
the graph can full in this way, it is impossible to give any
guarantees about the accuracy of the result.

One solution to this problem is to double-check aggregates
by computing them by multiple times. The simplest way to
do this would be request the aggregate be computed
multiple times at the root of the network; by observing the
common-case value of the aggregate, the client could make a
reasonable guess as to its true value. The problem with this
technique is that it requires retransmitting the aggregate
request down the network multiple times, at a significant

message overhead, and the user must wait for the entire
aggregation interval for each additional result.

Better approach is pipelined aggregate, in the pipe lined
approach, time is divided into intervals of duration I, during
each interval, every sensor that has heard the request to
aggregate transmit a partial aggregate by applying a to its
local reading and the values its children reported during the
previous interval. Thus, after the first interval, the root hears
from the sensors one and two missed the request to begin
aggregation, a sensor that hears another sensor reporting
the its aggregate values can assume it too should begin
reporting its aggregate value.

VI. GROUPING

The basic technique for grouping is to push down a set of
predicates that specify group membership, ask sensors to
choose the group they belong to, and then, as answers flow
back, update the aggregate values in the appropriate groups.
Group predicates are appended to requests to begin
aggregation. If sending all predicates requires more storage
than will fit into a single message, multiple messages are
sent. Each group predicate specifies a group id, a sensor
attribute (e.g. light, temperature), and a range of sensor
values that define membership in the group. Groups are
assumed to be disjoint and defined over the same attribute,
which is typically not the attribute being aggregated.
Because the number of groups can be large enough such that
information about all groups does not fit into the RAM of any
one sensor, sensors pick the group they belong to as
messages defining group predicates flow past and discard
information about other groups. Messages containing sensed
values are propagated just as in the pipelined approach
described above. When a sensor is a leaf, it simply tags the
sensor value with its group number. When a sensor receives
a message from a child, it checks the group number. If the
child is in the same group as the sensor, it combines the two
values just as above. If it is in a different group, it stores the
value of the child’s group along with its own value for
forwarding in the next interval. If another child message
arrives with a value in either group, the sensor updates the
appropriate aggregate. During the next interval, the sensor
will send out the value of all groups it collected information
about during the previous interval, combining information
about multiple groups into a single message as long as the
message size permits. Figure shows an example of
computing a query grouped by temperature that selects
average light readings. In this snapshot, data is assumed to
have filled the pipeline, such that results from the bottom of
the tree have reached the root. Recall that SQL queries also
contain a HAVING clause that constrains the set of groups in
the final query result by applying a filtration predicate to
each group’s aggregate value. We sometimes pass this
predicate into the network along with partitions. The
predicate is only sent into the network if it can potentially be
used to reduce the number of messages that must be sent:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 08 | Nov -2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET | ISO 9001:2008 Certified Journal | Page 1709

for, example, if the predicate is of the form MAX(attr)<x, then
information about groups with MAX(attr)>= x need not be
transmitted up the tree, and so the predicate is sent down
into the network. However, other HAVING predicates, such
as those filtering AVERAGE aggregates, or of the form
MAX(attr)>x, cannot be applied in the network because they
can only be evaluated when the final group-aggregate value
is known. Because the number of groups can exceed
available storage on any one sensor, a way to evict groups is
needed. Once an eviction victim is selected, it is forwarded to
the sensor’s parent, which may choose to hold on to the
group or continue to forward it up the tree. Because groups
can be evicted, the user workstation at the top of the
network may be called upon to combine partial groups to
form an accurate aggregate value. Evicting partially
computed groups is known as partial pre-aggregation, as
described in the database literature. There are a number of
possible policies for choosing which group to evict. We
believe that policies which incur a significant storage
overhead (more than a few bits per group) are undesirable
because they will reduce the number of groups that can be
stored and increase the number of messages that must be
sent. Evicting groups with low membership is likely a good
policy, as those are the groups that are least likely to be
combined with other sensor readings and so are the groups
that benefit the least from in-network aggregation. Evicting
groups forces information about the current time interval
into higher level nodes in the tree. Since in the standard
pipelined scheme presented above, aggregates are computed
over values from the previous time interval, this presents an
inconsistency. We believe, however, that this will not
dramatically effect aggregates; verifying this remains an area
of future work. Thus, we have shown how to partition sensor
readings into a number of groups and properly compute
aggregates over those groups, even when the amount of
group information exceeds available storage in any one
sensor.

VII. CONCLUSION

We have explained techniques for applying database style
aggregates with groups to sensor readings flowing through
ad hoc sensor networks. By applying generic aggregation
operations in the tradition of database systems, our
approach offer the ability to query arbitrary data in a sensor
network without custom building applications by pipelining
the flow of data through the sensor network, we are able to
robustly compute aggregates while providing raid and
continuous updates of their value to the user.

Finally, by snooping on messages in the shared channel and
applying techniques for hypothesis testing, we are able to
substantially improve the performance of our basic
approach. we have

This work mars a first step towards a generic, in network
approach for collecting and computing over sensor data.

SQL, as it has developed over many years, has proven to
work well in the context of database systems. When properly
applied to sensor networks, will offer similar benefits as
SQL: ease of use, expressiveness, and a standard on which
research and industry can build.

REFERENCES:

[1]P.-A. Larson. Data reduction by partial preaggregation. In
ICDE, 2002. (to appear).

[2]S. Madden and M. J. Franklin. Fjording the stream: An ar-
chitechture for queries over streaming sensor data. In ICDE,
2002. (to appear.

[3]A. Shatdal and J. Naughton. Adaptive parallel aggregation
algorithms. In ACM SIGMOD, 1995.

[4]D. Tennenhouse. Active networks. In OSDI, October 1996.

 [5]B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris.
Span: An energy-efficient coordination algorithm for topol-
ogy maintenance in ad-hoc wireless networks. In ACM Mo-
biCom, July 2001.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 08 | Nov -2015 www.irjet.net p-ISSN: 2395-0072

