
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 984

Literature Survey on Agile Information Systems Development

Surbhi R. Khare1, Ritesh Shrivastava2

 1 PIET, Department of Computer Technology, Nagpur, INDIA,

 2. ACET, Department of CSE, Nagpur, INDIA

 Abstract— The principles of agile information systems development (ISD) have become an area of great

interest for practice as well as research. So the goal of this literature survey is to validate, update and extend previous

reviews in terms of the general state of research on agile ISD. The importance of theory is highlighted by evaluating the

theoretical foundations and contributions of former studies besides including categories such as the employed research

methods and data collection techniques. Since agile ISD is rooted in the IS as well as software engineering discipline,

important outlets of both disciplines are included in the search process. The findings show that quantitative studies and

the theoretical underpinnings of agile ISD are lacking. Extreme Programming is still the most researched agile ISD

method, and more efforts on Scrum are needed. In addition, multiple research gaps that need further research attention

are also identified.

Key Words: Agile Process, Agile Method, Agile Practice, Agile Principles

---***---

1.Introduction

Agile software development is a group of software development methods in which requirements and solutions evolve through
collaboration between self-organizing, cross-functional teams. It promotes adaptive planning, evolutionary development, early
delivery, continuous improvement, and encourages rapid and flexible response to change.

Agile methods for software and information systems development (ISD) such as Scrum [1] or Extreme Programming (XP) [2]
are very popular in industry. Those methods complement the iterative approach to ISD [1], [3], [4] and have been suggested as
a way to react quickly to changing requirements by emphasizing small release cycles and through continuous integration of
the customer [5] [6] [7]. In contrast to traditional methods, flexibility and autonomy is considered important, the overall
project is not planned and scheduled upfront, and the development process is split in small iterations, while encouraging
constant feedback of the customer [5], [6]. Consequently, agile ISD methods appear to incorporate many lessons learned about
ISD during the past [7], [8].

Following the guidelines of Webster & Watson [9] and Peterson et al. [10], this literature review provides insights into the

general state of research on agile ISD in terms of research approaches, methods, data collection techniques, and focus of the

studies. The state of theory in the field of agile ISD is also evaluated by looking at theoretical contributions, employed theories

and definitions of agility. The goal of this review is to identify research areas that deserve future attention of the research

community. Consequently, the following two-part research question is investigated: What is the state of research on agile lSD,

and in consequence, what are the implications for future studies?

The remainder of this paper is structured as follows. First, related literature reviews on agile ISD are briefly discussed,

followed by the agile principles including details on the agile development methods. As a next step, the results of the literature

review are presented. In the last section, the findings are summarized and implications for future research are presented,

including several research gaps that entail opportunities for future work.

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6759181#ref_1
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6759181#ref_8
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6759181#ref_9

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 985

2 RELATED WORK

The first reviews were provided by Abrahamsson et al. [11], Cohen et al. [12], and Erickson et al. [13]. These reviews focus on

the employed agile practices and methods in industry. For example, Erickson et al. [13] review the state of research on XP and

agile modeling. The study finds that most empirical research is concerned with the XP practice pair programming, and other

practices are neglected. A more holistic review of agile ISD is provided by Dyba & Dingseyr [14] who investigate studies up to

and including 2005. The authors classify research on agile ISD in four main themes: introduction and adoption, human and

social factors, perceptions on agile methods, and comparative studies. They find that there is a need for more rigorous, high

quality empirical studies. Another finding is that there is a need for conducting research based on other methods besides XP

because empirical evidence on popular methods such as Serum is missing.

Most recently, Dingsoyr et al. [15] provide an overview of the theoretical perspectives that are employed by research on agile

lSD, but as the authors state themselves, the search results are limited because only the topic of studies were searched, and the

search strings were based on a previously defined keyword list of twenty theoretical perspectives, including lightweight

theoretical perspectives such as knowledge management and personality. The study concludes in a call for a more theory-

based research approach in the field of agile ISD.

 3. AGILE PRINCIPLES
The various agile principles are as follows.
The Agile Manifesto is based on 12 principles:
 Customer satisfaction by rapid delivery of useful software
 Welcome changing requirements, even late in development
 Working software is delivered frequently (weeks rather than months)
 Close, daily cooperation between business people and developers
 Projects are built around motivated individuals, who should be trusted
 Face-to-face conversation is the best form of communication (co-location)
 Working software is the principal measure of progress
8 Sustainable development, able to maintain a constant pace
9 Continuous attention to technical excellence and good design.
10 Simplicity—the art of maximizing the amount of work done—is essential Self-organizing teams.
11 Regular adaptation to changing circumstance.
12 Here are many specific agile development methods. Most promote development, team work and process adaptability
throughout the life-cycle of the project.

 3.1 Iterative, incremental and evolutionary
Most agile development methods break tasks into small increments with minimal planning and do not directly involve long-
term planning. Iterations are short time frames (timeboxes) that typically last from one to four weeks. Each iteration involves
a cross-functional team working in all functions: planning, requirements analysis, design, coding, unit testing, and acceptance
testing. At the end of the iteration a working product is demonstrated to stakeholders. This minimizes overall risk and allows
the project to adapt to changes quickly. An iteration might not add enough functionality to warrant a market release, but the
goal is to have an available release (with minimal bugs) at the end of each iteration.[12] Multiple iterations might be required to
release a product or new features.

 3.2 Efficient and face-to-face communication
No matter what development disciplines are required, each agile team contains a customer representative, e.g. product owner
in scrum. This person is appointed by stakeholders to act on their behalf[13] and makes a personal commitment to being
available for developers to answer mid-iteration questions. At the end of each iteration, stakeholders and the customer
representative review progress and re-evaluate priorities with a view to optimizing the return on investment (ROI) and
ensuring alignment with customer needs and company goals.

http://en.wikipedia.org/wiki/Timeboxing

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 986

In agile software development, an information radiator is a (normally large) physical display located prominently in an office,
where passers-by can see it. It presents an up-to-date summary of the status of a software project or other product.[14][15] The
name was coined by Alistair Cockburn, and described in his 2002 book Agile Software Development.[15] A build light indicator
may be used to inform a team about the current status of their project.

3.3 Very short feedback loop and adaptation cycle
A common characteristic of agile development are daily status meetings or "stand-ups", e.g. daily scrum (meeting). In a brief
session, team members report to each other what they did the previous day, what they intend to do today, and what their
roadblocks are.
 3.4 Quality focus
Specific tools and techniques, such as continuous integration, automated unit testing, pair programming, test-driven
development, design patterns, domain-driven design, code refactoring and other techniques are often used to improve quality
and enhance project agility.

4.AGILE METHODS

Well-known agile software development methods and/or process frameworks include:

4.1 Adaptive software development (ASD):
Adaptive software development (ASD) is a software development process that grew out of rapid application development
work by Jim Highsmith and Sam Bayer. It embodies the principle that continuous adaptation of the process to the work at
hand is the normal state of affairs.
Adaptive software development replaces the traditional waterfall cycle with a repeating series of speculate, collaborate, and
learn cycles. This dynamic cycle provides for continuous learning and adaptation to the emergent state of the project. The
characteristics of an ASD life cycle are that it is mission focused, feature based, iterative, timeboxed, risk driven, and change
tolerant.
4.2 Agile modeling :
Agile modeling (AM) is a methodology for modeling and documenting software systems based on best practices. It is a
collection of values and principles, that can be applied on an (agile) software development project. This methodology is more
flexible than traditional modeling methods, making it a better fit in a fast changing environment.[1] It is part of the Agile
software development tool kit.
Agile modeling is a supplement to other agile methodologies such as Scrum, extreme programming (XP), and Rational Unified
Process (RUP). It is explicitly included as part of the disciplined agile delivery (DAD) framework. As per 2011 stats, agile
modeling accounted for 1% of all agile software development.
4.3 Agile Unified Process (AUP):
Agile Unified Process (AUP) is a simplified version of the Rational Unified Process (RUP) developed by Scott Ambler.[1] It
describes a simple, easy to understand approach to developing business application software using agile techniques and
concepts yet still remaining true to the RUP. The AUP applies agile techniques including test-driven development (TDD), Agile
Modeling (AM), agile change management, and database refactoring to improve productivity.
 4.4 Dynamic systems development method (DSDM) : Dynamic systems development method (DSDM) is an project
delivery framework, primarily used as a agile.[1][2] First released in 1994, DSDM originally sought to provide some discipline to
the rapid application development (RAD) method.[3] In 2007 DSDM became a generic approach to project management and
solution delivery. DSDM is an iterative and incremental approach that embraces principles of Agile development, including
continuous user/customer involvement.
DSDM fixes cost, quality and time at the outset and uses the MoSCoW prioritisation of scope into musts, shoulds, coulds and
won't haves to adjust the project deliverable to meet the stated time constraint. DSDM is one of a number of Agile methods for
developing software and non-IT solutions, and it forms a part of the Agile Alliance.
4.5 Extreme programming (XP):
Extreme programming (XP) is a software development methodology which is intended to improve software quality and
responsiveness to changing customer requirements. As a type of agile software development,[1][2][3] it advocates frequent
"releases" in short development cycles, which is intended to improve productivity and introduce checkpoints at which new
customer requirements can be adopted.

http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Domain-driven_design
http://en.wikipedia.org/wiki/Code_refactoring
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Jim_Highsmith
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Timeboxing
http://en.wikipedia.org/wiki/Software_development_process_models
http://en.wikipedia.org/wiki/Documentation
http://en.wikipedia.org/wiki/Agile_modeling#cite_note-1
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_development
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Extreme_programming
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Disciplined_agile_delivery
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Scott_Ambler
http://en.wikipedia.org/wiki/Agile_Unified_Process#cite_note-register-1
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Agile_Modeling
http://en.wikipedia.org/wiki/Agile_Modeling
http://en.wikipedia.org/wiki/Agile_Modeling
http://en.wikipedia.org/wiki/Database_refactoring
http://en.wikipedia.org/wiki/Agile_management
http://en.wikipedia.org/wiki/Dynamic_systems_development_method#cite_note-1
http://en.wikipedia.org/wiki/Dynamic_systems_development_method#cite_note-1
http://en.wikipedia.org/wiki/Dynamic_systems_development_method#cite_note-1
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Dynamic_systems_development_method#cite_note-3
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/MoSCoW_prioritisation
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Informatics85-1
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Informatics85-1
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Informatics85-1
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-Informatics85-1
http://en.wikipedia.org/wiki/Extreme_programming#cite_note-USFCA601-3

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 987

4.6 Feature-driven development (FDD):
Feature-driven development (FDD) is an iterative and incremental software development process. It is one of a number of
lightweight or Agile methods for developing software. FDD blends a number of industry-recognized best practices into a
cohesive whole. These practices are all driven from a client-valued functionality (feature) perspective. Its main purpose is to
deliver tangible, working software repeatedly in a timely manner.
4.7 Scrum :
Scrum is an iterative and incremental agile software development framework for managing product development. It defines "a
flexible, holistic product development strategy where a development team works as a unit to reach a common goal",
challenges assumptions of the "traditional, sequential approach" to product development, and enables teams to self-organize
by encouraging physical co-location or close online collaboration of all team members, as well as daily face-to-face
communication among all team members and disciplines in the project.

5 CONCLUSION

In this study, a systematic, structured literature review in the field of agile ISD was conducted. The results show that the state
of research on agile ISD is still nascent because there is an imbalance in terms of the employed research methods towards
interview-based case studies. Those qualitative research designs are essential for providing first evidence on important factors
and relationships, but confirmatory studies testing the qualitative findings are lacking. More studies are needed that are based
on quantitative approaches such as field studies or experiments in order to ensure that the qualitative findings are
generalizable. Furthermore, this review exposed promising research areas by presenting a systematic map on the focus of the
studies and the employed research methods. Some of these areas, for example the communication patterns of agile teams, are
highly important for the successful implementation of agile practices [6] and first qualitative findings exist , but research
remains scarce. The same proposition holds for other research areas such as agile vs. lean, hybrid approaches and
organizational culture. In consequence, we need more studies that address the following research gaps:

1. What are the implications of agile ISD on the coordination, collaboration and communication
 mechanisms within agile teams?

2. How are agile ISD and lean software development related?
3. What is the impact of agile practices on the organizational culture?
4. How can agile methods and traditional, plan based methods be combined?
5. What are the implications of agile ISD on release scheduling and requirements engineering?
6. What are the success factors underlying agile ISD?

Despite the popularity of Scrum in industry, most researched is based on XP, more specifically on the pair programming, unit testing
and refactoring practices. One possibled from the original submission for page layout reasons. This includes the possibility that some
in-line equations will be made display equations to create better flow in a paragraph. If display equations do not fit in the two-
column format, they will also be reformatted. Authors are strongly encouraged to ensure that equations fit in the given column
width. reason for this emphasis on XP is that studies on pair programming may be set up inexpensively in an academic setting
with small teams of students. In terms of unit testing and refactoring, many studies propose tools that may support those
practices. Future research should focus on other XP practices such as collective code standards and on-site customer.
Furthermore, more research is needed that provides theoretically grounded guidance for industry on the adoption, adaption and
success factors of Scrum.

6 REFERENCES

[1] K. Schwaber, and M. Beedle, Agile Software Development with Scrum, Prentice Hall, Upper Saddle River, NJ, USA, 2002.
[2] K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, Boston, MA, USA, 1999.
[3] M. Poppendieck, and T. Poppendieck, Lean Software Development: An Agile Toolkit, Addison-Wesley
Longman, 1st ed., Amsterdam, 2003.
[4] J. Martin, Rapid application development, Macmillan Publishing Co., Inc, New York, NY, USA, 1991.
[5] L. Cao, K. Mohan, X. Peng, and B. Ramesh, "A framework for adapting agile development methodologies",European Journal of
Information Systems, 18(4), 2009, pp.332-343.
[6] R. Vidgen, and X. Wang, "Coevolving Systems and the Organization of Agile Software Development", Information Systems
Research, 20(3), 2009, pp. 355-376.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 988

[7] J. Highsmith, and A. Cockburn, "Agile SoftwareDevelopment: The Business of Innovation", IEEE Computer, 34(9), 2001, pp.
120-127.
[8] A. Cockburn, and J. Highsmith, "Agile Software Development: The People Factor", IEEE Computer, 34(11), 2001, pp. 131-133.
[9] J. Webster, and R.T. Watson, "Analyzing the past to prepare for the future: Writing a literature review", MIS Quarterly, 26(2),
2002, pp. 13-23.
[10] K. Peterson, R. Feldt, S. Mujtaba, and M. Mattsson,"Systematic mapping studies in software engineering", in: International
Conference on Evaluation and Assessment in Software Engineering, 2008, pp. 68-77.
[11] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, Agile software development methods: review and analysis, VTT
Technical Report, 2002.
[12] D. Cohen, M. Lindvall, and P. Costa, "An introduction to agile methods", in (Zelkowitz, M.V.): Advances in Computers, Elsevier
Ltd., .
[13] J. Erickson, K. Lyytinen, and S. Keng, "Agile Modeling, Agile Software Development, and Extreme
Programming: The State of Research", Journal of Database Management, 16(4), 2005, pp. 88-100.
[14] T. Dyba, and T. Dingsoyr, "Empirical studies of agile software development: A systematic review", Information and Software
Technology, 50(9-10), 2008, pp. 833-859.
[15] T. Dingsoyr, S. Nerur, V. Balijepally, and N.B. Moe,"A decade of agile methodologies: Towards explaining agile software
development", Journal of Systems and Software, 85(6), 2012, pp. 1213-1221.
[16] D. Batra, D.E. Vandermeer, and K. Dutta, "Extending Agile Principles to Larger, Dynamic Software Projects: A Theoretical
Assessment", Journal of Database Management, 22(4), 2011, pp. 73-92.
[17] G. Lee, and W. Xia, "Toward Agile: An Integrated Analysis of Quantitative and Qualitative Field Data", MIS
Quarterly, 34(1), 2010, pp. 87-114.
[18] T.D. Hellmann, A. Hosseini-Khayat, and F. Maurer, "Test-Driven Development of Graphical User Interfaces: A Pilot
Evaluation", in (Sillitti, A., Hazzan, O., Bache, E., and Albaladejo, X.): Agile Processes in Software Engineering and Extreme
Programming, XP 2011, Springer, Berlin Heidelberg, 2011, pp. 223-237.

