
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 573

DESIGN AND ANALYSIS OF TRANSIENT FAULT TOLERANCE FOR

MULTI CORE ARCHITECTURE

 DivyaRani1

 1pg scholar, ECE Department, SNS college of technology, Tamil Nadu, India

ABSTRACT- This paper describes the software

approach of fault tolerance for shared memory multi

core system using PLR.PLR uses a software-centric

approach transient fault tolerance which ensuring a

correct software execution. This scheme is used at user

space level which does not necessitate changes to the

original application.PLR create a set of redundant

process per application process. In this scheme

multithread redundant process is mainly used to detect

the soft errors and recover from the fault. The main

goal is to use software leverage by available using

hardware parallelism for low overhead fault tolerance.

Fault tolerance which allow the system perform

correctly even in the presence of faults. In existed the

system is appraised for fault coverage performance.

This paper presents Software based multi core

alternatives for design and analysis transient fault

tolerance using process-level redundancy (PLR) which

implements fault error detection and fault recovery.

This is flexible alternative but higher overhead

correctness is defined by software output overhead

incurred by our approach ranges is lower when

comparable to existed. It furnishes a low overhead

mechanism and render improved performance over

existent software transient fault tolerance techniques.

Index terms -Fault tolerance, transient faults, soft

errors, process-level redundancy.

1. INTRODUCTION

Transient faults, also called as soft errors, which concern
in the reliability of computer systems. A transient fault
occurs even in the presence of error. Fault cause error
results failure. Fault cause error observed by deviation
from expected behavior results failure. It occurs event

(e.g., cosmic particle strikes, power supply noise, device
coupling) alluviation or removal of enough charge to invert
the state of transistor. The inverted value may cause the
effect in program execution.

Current trend in process technology show that the future
error rate will remain comparatively constant. The
number of usable transistor per chip continuously grows
in an exponential manner, which increases dramatically.
These trends had shown that to ensure correct execution
operation of systems.

Transient fault characteristics are reliability,
dependability, accessibility and availability. The memory is
easily protected with error correcting code and parity
within high performance microprocessor.

However, the same specified techniques cannot be directly
adopted for general purpose computing domain.
Compared to the ultra reliable, computing environments,
general purpose system are driven by a different and often
conflicting set of factors. These factors include

Application specific constraints Fault results in a glitch
which may not noticed by the user. Thus, the reliability
improves to meet user expectations of failure rates.

While software technique cannot render a reliability level
of hardware technique, they significantly provides a low
cost and flexible (zero hardware design cost).existing
software transient fault tolerance approaches use the
encyclopedist to insert redundant instructions for
checking computation and control flow process.
Redundant more than is needed, desired or required to
ensure correct execution.

This paper presents the design and analysis of transient
fault tolerance using PLR(process level redundancy).PLR
create a set of redundant process per application process
and which are used to comparing their output to ensure a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 574

correct execution. This is mainly used to leverage
overhead mechanism.

This paper makes the following contributions:

 Introduces a software-centric transient
fault tolerance which execute system
correctly

 We differentiate between hardware-
centric and software-centric commonly
used by sphere of replication (SOR)
concept.

 Show how software-centric can be
effective in ignoring benign fault.

2. BACKGROUND

Fault can be classified by its effect on execution into
following categories

 Benign fault.

 Silent data corruption(SDC)

 Detected uncoverable error(DUE)

Benign fault. A transient fault that does not propagate to
affect the correctness of an application is considered a
benign fault.

 Silent data corruption (SDC).A transient fault that is
undetected and propagates to corrupt program output is
considered as SDC.

Detected uncoverable error (DUE).A transient fault that is
detected and propagates without the possibility of
recovery is considered a DUE.

 PLR SOR Processor SOR

(a) hardware-centric (b) software-centric

Fig.1.Hardware-centric and software-centric transient
fault detection models. A software centric model (e.g.,
PLR) views the system as the software layers and the
sphere of influence around particular layers. (a)
hardware-centric (b) software-centric

Most previous access are hardware-centric

 -even compiler approaches (e.g., SWIFT, EDDI)

Software-centric able to leverage the strength of a
software approach

3. SOFTWARE-CENTRIC FAULT DETECTION

SOR concept is used for defining the boundary of reliability
in redundant hardware design.

1. All the inputs are replicated

2. Execution is redundant

3. Output is compared

WHILE the hardware-centric model is appropriate for
hardware-implemented techniques, it is awkward to apply
the same approach to software. The reason is that software
naturally operates at a different level and does not have
full visibility into the hardware. However, previous
compiler-based approaches effort to simulate a hardware-
centric SOR. For example, SWIFT places its SOR, around
the processor. Without the ability to control duplication of
hardware, SWIFT duplication at the instruction level.
Each load is performed twice for input replication and all

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 575

computation is performed twice on the repeated inputs.
Output comparison is fulfilling by checking the data of each
store instruction anterior to executing the store
instruction. This particular approach works because it is
possible to emulate processor redundancy with redundant
instructions. However, other hardware-centric SORs
would be impossible to emulate with software. For
example, software alone cannot implement an SOR around
hardware caches.

4 PROCESS-LEVEL REDUNDANCY (PLR)

FIG.2-overview of the PLR system architecture with
Three redundant processes.

FIG.3-modified PLR system architecture

 Enforces SOR with input replication and output
comparison

 System call emulation
 Detect and recover from transient fault for

determinism
Software-implemented. PLR is implemented entirely in
software and runs in user space under the application. In
this manner, PLR is able to provide transient fault
tolerance without requiring modifications to the OS or
underlying hardware. In addition, software
implementation makes PLR extremely flexible.
Applications that must be reliable can be run with PLR,
while other applications run regularly.

Software-centric. PLR uses a software-centric approach
to fault detection with an SOR around the user space
application and its accompanying shared libraries. All
user-space executions are redundant and faults are only
detected if they result in incorrect data exiting user space.
This extends the checking boundaries for fault detection as
compared to most other transient fault tolerance
techniques and permits a PLR to ignore many benign
faults.
Replica-based. PLR uses process replicas to provide
redundancy. PLR replicates the entire process virtual
address space as well as the process metadata such as file
descriptors. In addition, PLR automatically creates and
coordinates among the redundant processes to maintain
determinism among the processes, detect transient faults,
and recover from detected faults. Operating at the process
level has a distinct advantage in that processes are also a
basic abstraction of the OS. Therefore, PLR can leverage
multiple hardware resources such as extra hardware
threads or cores by simply allowing the OS to schedule the
replicas across all available hardware resources.

4.1 PLR Overview

A overview of the PLR system is shown in PLR gains
control of an application before it begins to execute and
begins its initialization phase. First, PLR make a monitor
process and then initializes metadata including a shared
memory segment exploited for interprocess
communication. Then, PLR forks the application N times,
with N ¼ 2 as the minimum for fault detection and N ¼ 3
as the minimum for fault detection and fault recovery.
These processes are the redundant processes, which
actually perform the execution of the application. One of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 576

the redundant processes labeled the master process and
the other one labeled as the slave processes. During
execution of the redundant processes, the systems call
emulation unit co-ordinates system I/O among the
redundant processes. In general, the master process is to
perform system I/O while the slave processes emulate
system I/O. The system call emulation unit also implement
the software-centric fault detection model and implements
transient fault detection and recovery. A watchdog timer is
attached to the system call emulation unit, which is used to
detect error in which a fault causes one of the redundant
processes to hang indefinitely. After initialization and the
redundant processes are created, the original process
becomes a figurehead process. The figurehead process
does not do whatever work. It only holds for the
redundant processes to finish execution and forwards
signals to the redundant processes.

In the modified diagram PLR this paper approach three
redundant process, this block consist of SRAM, static
random access memory, shift register, master and slave
process. SRAM is a semiconducting memory that uses a bi
stable latching circuitry (flip flop) to store each bit. SRAM
reveal data reminisce, but it is still volatile in the
conventional sense that data is eventually lost when the
memory is not powered. Static memory which is mainly
used for a storage device it is a permanent storage. In this
6T SRAM it performs word line and bit line operation.

Shift register are a type of sequential logic circuit mainly
used for storage. They are group of flip-flops connected in
a chain. So that the output from one flip-flop becomes the
input of next flip-flop. All the flip-flops are driven by
common clock and all are set or reset simultaneously. One
of the redundant processes labeled the master process
and the other one labeled as the slave processes. Here we
used a adder application here two half adder as designed
as a full adder which propagates the sum and carry output.

The system call emulation unit also implement the
software-centric fault detection model and implements
transient fault detection and recovery. A watchdog timer is
attached to the system call emulation unit, which is used to
detect error in which a fault causes one of the redundant
processes to hang indefinitely.

4.2 TRANSIENT FAULT DETECTION AND FAULT

RECOVERY

 Output mismatch

 Watchdog timeout

 Program failure

Fault detection. Fault tolerance which allow the system
operate correctly even in the presence of faults.

Technique used during service to detect fault using the
operating system.

 Detection mechanism. Detect as a mismatch of compare
buffer on an output comparison.

Recovery mechanism. Use majority vote ensure correct
data exist, it kills incorrect process.

4.3WINDOWS OF VULNERABILITY

 Faults during PLR execution

 Fault during execution of operating system.

5. EXPERIMENTAL RESULTS

FIG.4- Design and analysis of the transient fault

tolerance using PLR

This paper describes a low overhead software based
approach. The design consists of SRAM block, shift
register, adder, and master and slave process. Top module
consist SRAM which is used to store the data. Shift register

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 577

we used totally three shift register they are group of flip
flops are connected in a chain. All the flip flops are driven
by a common clock. Next stage is master and slave process
we are designing adder circuit. Watch dog timer which is
used to detect the error here designed as a NOR and
inverter.

Here have to design the PLR circuit for transient fault
design. This circuit consists of four stages

1) Memory block 2) shift register 3) master and slave
process 4) watch dog timer

Now we are designing memory in that memory design
input signal are given to memory to store the memory
value with respect to word line WL. If WL high mean the
data will be positive in shift register module or else it will
be store as it is. Shift register consists of D flip flop with
five bit. Based on input memory will produce the output
with respect to clock signal. From the output of shift
register is given to master and slave module it will
function the full adder. Full adder process designed by
using a two half adder.

Fig.5. RESULTS OF THE FAULT OUTCOME FAULT- FREE
OUTPUT

Fault free from output of the signal if it error means watch
dog timer indicates the error hang indefinitely. If we
introduce fault in the design and analysis a transient fault
occurs if we given the input WL=0 in memory SRAM there
is no input signal is passed through shift register because

in SRAM if the word line WL high means then only we get
an fault free output due to that we will receive a memory
output through the via of shift register get a faulty output.

FIG.6.RESULT OF THE FAULTY OUTPUT PLR DETECTS
THE FAULTS.

6. CONCLUSION

This paper has motivated the necessity for software
transient fault tolerance for general purpose
microprocessors and proposed PLR as an attractive
alternative in emerging multi core processors. By
providing redundancy at the process level, PLR leverages
to freely schedule the processes to all available hardware
resources. In addition, PLR can be deployed without
modifications to the application, OS, underlying hardware.
A real PLR supporting single-threaded applications is
presented and evaluated for fault coverage and
performance. Fault injection experiments prove that PLR’s
software-centric fault detection model effectively detects
faults that safely ignoring benign faults. Present a software
implemented transient fault tolerance technique to utilize
general purpose hardware with multi cores. PLR
performance meliorates upon existing software transient
fault tolerance techniques and takes a step toward
enabling software fault tolerant solutions with comparable
performance to hard-ware techniques.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 578

REFERENCES

[1] Alex Shye, Student Member, IEEE, Joseph Blomstedt
“PLR: A Software Approach to Transient Fault Tolerance
for Multi core Architectures”IEEE transaction on
dependable and secure computing.

[2] S.E. Michalak et al., “Predicting the Number of Fatal Soft
Errors in Los Alamos National Laboratory’s ASC Q
Supercomputer,” IEEE Trans. Device and Materials
Reliability, vol. 5, no. 3, pp. 329-335, Sept. 2005.

[3] A. Shye, T. Moseley, V.J. Reddi, J. Blomstedt, and D.A.
Connors, “Using Process-Level Redundancy to Exploit
Multiple Cores for Transient Fault Tolerance,” Proc. 37th
Int’l Conf. Dependable Systems and Networks (DSN ’07),
June 2007.

[4] Iwagaki , T ,;nakaso , t ohkubo , r ; Ichihara ,h “
scheduling algorithm in data path synthesis for long
duration transient fault tolerance”IEEE transaction on
defect and fault tolerance in VLSI technolgy volume oct
2014.

 [5] G.A. Reis et al., “SWIFT: Software Implemented Fault
Tolerance, Proc. Int’l Symp. Code Generation and
Optimization (CGO), 2005.

[6] C. Weaver et al., “Techniques to Reduce the Soft Error
Rate o a High-Performance Microprocessor,” Proc. 31st
Int’l Symp. Computer Architecture (ISCA), 2004.

[7] S.K. Reinhardt and S.S. Mukherjee, “Transient Fault
Detection via Simultaneous Multithreading,” Proc. 27th
Ann. Int’l Symp. Computer Architecture (ISCA), 2000.

[8] A. Shye, T. Moseley, V.J. Reddi, J. Blomstedt, and D.A.
Connors," Using Process-Level Redundancy to Exploit
Multiple Cores for Transient Fault Tolerance,” Proc. 37th
Int’l Conf. Dependable Systems and Networks (DSN ’07),
June 2007.

 [9]N. Oh et al., “Error Detection by Duplicated
Instructions in Super- Scalar Processors,” IEEE Trans.
Reliability, vol. 51, no. 1, Mar. 2002.

[10] K. Sundaramoorthy, Z. Purser, and E. Roten burg,
“Slipstream Processors: Improving Both Performance and
Fault Tolerance”Proc. Ninth Int’l Conf.Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2000.

[11] R.C. Baumann, “Soft Errors in Commercial
Semiconductor Technology: Overview and Scaling Trends,”
IEEE 2002 Reliability Physics Tutorial Notes, Reliability
Fundamentals, pp. 121_01.1-121_01.14, Apr. 2002

[12] C. Weaver et al., “Techniques to Reduce the Soft Error
Rate of a High-Performance Microprocessor,” Proc. 31st
Int’l Symp.Computer Architecture (ISCA), 2004.

[13] Diego Montezanti1, Enzo Rucci1, Dolores Rexachs2,
Emilio Luque2, Marcelo Naiouf1 and Armando De Giusti1,
3” A tool for detecting transient faults in execution of
parallel scientific applications on multicore clusters”

[14] S. Hareland et al., “Impact of CMOS Scaling and SOI on
Software Error Rates of Logic Processes,” VLSI Technology
Digest of Technical Papers, 2001.

[15] T. Karnik et al., “Scaling Trends of Cosmic Rays
Induced Soft Induced Soft Errors in Static Latches beyond
0.18,” VLSI Circuit Digest of Technical Papers, 2001.

