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Abstract - The main aim of this paper is to how 

quickly set up the virtual prototyping of Double 

Wishbone Suspension and Steering Model System to 

check the dynamic behavior of system for a given input 

signal at the center of the wheel as vertical ground load 

to measure Toe angle and wheel height. For this Double 

Wishbone Suspension System as an example, a Co-

simulation control method and Flexible Body 

integration method is introduced to research multi - 

body dynamics. Using Kinematic and Newton - Euler 

and Lagrange method used to establish the Dynamics 

Model of Double Wishbone Suspension. The simulation 

results indicate that the Double Wishbone Suspension 

and Steering Model System have preferable response 

characteristics. The co - simulation method is more 

effective. To establish the Dynamic behavior of the Tie 

Rod of Double Wishbone Suspension system in terms of 

Mode shapes. 
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1. INTRODUCTION 
 
In automobiles, Suspension system consisting of springs shock 

absorbers and linkages that connect the vehicle to the wheels 

and allows relative motion between the wheels and the vehicle 

body. Double Wishbone suspension is an independent 

suspension design using two wishbone shaped arms to locate the 

wheel shows in Figure 1. Each wish bone or arm has two 

mounting points to the chassis and one joint at the knuckle. The 

shock absorber and coil spring mount to the wishbones to 

control vertical movement.  

Double wishbone designs allow the engineer to carefully control 

the motion of the wheel throughout the suspension travel, 

controlling such parameters as camber angle, caster angle, toe 

pattern, roll center height, scrub radius. The steering arm is 

attached to the wheel. Also, the most important role played by 

the suspension system is to keep the wheels in contact with the 

road all the time one of the functions of the suspension system is 

to maintain the wheels in proper steer and camber attitudes to 

the road surface. 

 

Fig-1: Double Wishbone Suspension System 

It should react to the various forces that act in Dynamic 

condition. These forces include longitudinal (acceleration and 

braking) forces, lateral forces (cornering forces) and braking and 

driving torques. All the dynamic parameters are considered 

while designing the suspension system, especially the behavior 

of the suspension for various loading cases.  

In this paper, a dynamical model of the Double wishbone 

suspension system with steering model is built up in 

ADAMS/view shows in Figure 2, the PID control model was built 

in MATLAB/SIMULINK, and Tie Rod of Double wish bone 

suspension was imported from NASTRAN-PATRAN in the form of 

Flexible body file (MNF) for flexible body integration to carry 

Dynamic Analysis. The Double wishbone suspension system 

model and the control model are integrated through 

ADAMS/Control Module, and the co-simulation carried out for 

the given vertical loads at the wheel center and a measure Toe 

angle and Wheel Height for an applied force input signal from 

MATLAB/SIMULINK.  

  

Fig-2: Double Wishbone Suspension Model in ADAMS 
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2. KINAMATICS AND DYNAMIC MODEL OF 

DOUBLE WISHBONE SUSPENSION  
 

The topological graph of double-wishbone suspension describes 

in Figure 3. The ability to adjust many aspects of its kinematics 

makes the double-wishbone suspension popular on high-

performance vehicles; its load-handling capabilities also make it 

suitable for use on the front axle of medium and heavy vehicles. 

The upper and lower control arms are connected to the wheel 

carrier with spherical joints (S), and to the chassis with revolute 

joints (R). One end of the tie rod is connected to the wheel carrier 

with a spherical joint; a universal joint (U) at the other end 

connects it to either the rack (on the front axle) or the chassis 

(on the rear axle). The system is modeled using joint coordinates 

as labeled in Fig.3.   

 

q =   wθ, ζ, η, ξ, uθ, `θ, α, β, s              [1] 

 

 

Fig-3: Double Wishbone Suspension Topological Graph 

The configuration of the uni-versal joint is specified by its angles 

of rotation about the global Z-axis (α) and the rotated X0-axis (β); 

{ζ, η, ξ} represents the 3-2-1 Euler angles associated with the 

spherical joint between the upper control arm and the wheel 

carrier. Neglecting the motion of the chassis, this system has 

three degrees-of-freedom: the rotation of the wheel (wθ), the 

displacement of the rack (s), and the vertical displacement of the 

wheel carrier (z). Note that a rack displacement is an input to the 

model, which reduces the number of degrees-of-freedom to two. 

We proceed with a purely joint coordinate formulation to 

minimize the number of modeling coordinates. The Multibody 

library used to generate the following six constraint equations, 

three for each independent kinematic loop:  

 

     φ1,2,3 (ζ, η, ξ, uθ, `θ)=0,    φ4,5,6 (ζ, η, ξ, uθ, α, β, s)=0 [2] 

 

Drawing from the results of the preceding examples, we employ 

the following strategy: 

1.  Assign one of {ζ, η, ξ} to the independent coordinate vector qi. 

2. Compute the two remaining spherical joint angles iteratively 

using two of the six constraint equations (2).  

3. Compute the four remaining generalized coordinates uθ, `θ, α, β 

recursively by tri-angularizing the remaining constraint 

equations. 

The first objective is to derive a triangular system to solve 

for qd1 = ( uθ, lθ, α, β) recursively, given values of {ξ, ζ, η}. We 

begin by expressing φ1 in the following form:  

 

A1 sin `θ + B1 cos `θ = C1                                                                   [3] 

 

Where: co-efficients A1, B1, and C1 are functions of {ξ, ζ, η, uθ}. The 

following solutions can then be obtained for sin( lθ)   and cos( lθ) 

 =                                                              [4] 

=                                                             [5] 

only the first three of which are assumed to be known at this 

stage of the solution. We obtain an expression for uθ as a function 

of {ξ, ζ, η} by substituting (4) and (5) into φ2 which, once 

simplified, can be expressed in the following form: 

 

A2sin(uθ)+B2cos(uθ)+D2sin(uθ)cos(uθ)+E2cos2(uθ)=C2                      [6] 

 

Where: Co-efficients are functions of {ξ, ζ, η}. Note that the 

second-order trigonometric terms appear upon eliminating the 

square roots introduced by (4) and (5). Although (6) can be 

solved for sin (uθ) and cos(uθ) , the solution is quartic and would 

require iteration to evaluate numerically. Instead, we note that 

the coefficients in D2 and E2 are significantly smaller than those 

appearing elsewhere, so expect these terms to have negligible 

effect on the numerical solution. Thus, we use the 

approximations D2≈0 and E2≈0 to obtain an equation analogous 

to (3), which results in solutions for uθ of the form shown in (4) 

and (5). Evaluating numerically over the full range of motion of 

the wheel carrier, we find that this approximation introduces an 

error of less than 5.7 × 10−4 [rad] (0.1%) in the solution for uθ, 

which is deemed to be an acceptable compromise given our real-

time intentions. A similar strategy can be employed to 

triangularize φ4 and φ5. In particular, φ4 can be expressed as 

follows: 

 

A4sin (β) +B4cos (β) =C4                                                                                                    [7] 

 

Where: A4, B4, and C4 are functions of {ξ, ζ, η, uθ, α}. Solutions for 

sin(β) and cos(β) can then be obtained as before. Upon 

substitution of these solutions into φ5, we obtain an equation of 

the following form: 

 

A5sin(α)+B5cos(α)+D5sin(α)cos(α)+ E5cos2(α)= C5   (5.16)      [8] 

 

Where: The solutions of the form shown in (4) and (5) are 

obtained. As will be verified below, the error introduced by this 

approximation—less than 4.5 ×10−4 [rad] (1.5%) in the solution 

for α—does not significantly degrade the quality of the results. In 
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summary, we have generated the following triangular system to 

solve for qd1 = uθ, `θ, α, β recursively, given values of {ξ, ζ, η}: 

 
uθ = f (ξ, ζ, η)                                            [9]                                      

`θ = f (ξ, ζ, η, uθ)             [10]               

α = f (ξ, ζ, η, uθ)                                           [11] 

β = f (ξ, ζ, η, uθ, α)             [12]     

                           

 

Fig-4: Kinematic solution flow for double-wishbone suspension  

 

Kinematic simulations are performed by fixing the chassis to the 

ground and applying motion drivers to the independent 

coordinate ξ and rack displacement s, as shown in Figure 4. The 

input applied to spherical joint angle ξ drives the wheel carrier 

through its full range of vertical motion, as shown in Figure 4, 

and compare the computational efficiency of three solution 

approaches: 

1. Computing qd1 and qd2 using the block-triangular 

solution shown in Figure 4.  

2. Computing qd using Newton’s method, iterating over 

the original constraint equations (1) and using 

Gaussian elimination with partial pivoting to invert the 

6 × 6 Jacobian matrix numerically.  

3. Computing qd using Newton’s method, iterating over 

the original constraint equations (1) and using a 

symbolic Jacobian inverse. 

2.2 LAGRANGIAN DYNAMICS FOR A MULTIBODY 

SYSTEM 
Newton-Euler equations are expressed in generalized 

coordinates; multibody dynamics is a straightforward extension  

Of a single rigid body the kinetic and strain energies are 
 

 Kinetic Energy   T = {                                                   [13] 

Strain Energy    U = {                                                      [14] 

The Lagrange’s equations; 

                                                             [15]                            

2.1 Toe Angle 
Toe angle is the measure of how far inward or outward the 

leading edge of the tire is facing, when viewed from the top. Toe 

is measured in degrees and is generally a fraction of a whole 

degree. It has a large effect on how the car reacts to steering 

inputs as well as on tire wear. Aggressive toe angle will cause the 

tire to develop “feathering” across its surface. Toe-in is when the 

leading part of the tire is turned inwards towards the center of 

the car shown in Figure 5. This makes the tires want to push 

inward, which acts to improve straight line stability of the car as 

it’s traveling down the road; particularly at high speed 

(highway).Toe-out is when the leading part of the tire is turned 

outwards away from the center of the car. This makes the tires 

want to separate from each other.  

 

 

Fig-5: Toe Angle 

3. CO-SIMULATION BETWEEN ADAMS AND 
MATLAB/SIMULINK 
 
Co-simulation between ADAMS and MATLAB /SIMULINK means 

that build multi-body system in ADAMS, output parameters 

related to system equation and then import information from 

ADAMS into MATLAB/SIMULINK and set up control scheme in 

ADAMS/CONTROL Module. During calculation process, there 

exchanges data between Virtual Prototype and Control Program, 

where, ADAMS solves the Mechanical System Equation and 

MATLAB solves the Control System Equation. They both 

complete the whole control process. The flow chart of co-

simulation described in Figure 5.  In this case the vehicle is 

modeled on ADAMS-View shown in Figure 10, whereas the PID 

Controller was modeled in SIMULINK. The model built in ADAMS, 

as a sub-system, need to be imported into MATLAB/SIMULINK, 

on which SIMULINK constructs the co-simulation system shows 

in Figure 7. Initially exchange data between ADAMS and 

MATLAB/SIMULINK through ADAMS/CONTROL interface and 

Fig.6 describes the inside of the block Adams _sub. And Figure 8, 

9 show such dynamic response for a given input signal in 

MATLAB/SIMULINK. Figure 11, 12 shows dynamic response in 

ADAMS. 
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Fig-5: Co-Simulation and Flexible body integration flow chart of 
ADAMS, MATLAB/SIMULINK, and NASTRAN-PATRAN 

 

 
 
Fig-6: ADAMS Sub System Module 
 

 

Fig-7: Control Scheme of the Co-simulation  

 

 

Fig-8: Response of Sine signal on Wheel Centre 

 

Fig-9: Response of Toe Angle 

 

 

Fig-10: Double Wishbone Suspension Model in ADAMS  

 

 Fig-11: Applied Input Signal ADAMS (Wheel Height) 

 

 Fig-12: Toe Angle Result from ADAMS 
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4. FLEXIBLE BODY INTEGRATION 

The View Flex module in Adams/View enables users to 

transform a rigid part to an MNF-based flexible body using 

embedded finite element analysis where a meshing step and 

linear modes analysis will be performed in MSC NASTRAN-

PATRAN of Tie Rod are shows in Figure 13, allowing one to 

create flexible bodies without leaving Adams/View and without 

reliance on Finite Element Analysis software. Also, it’s a 

streamlined process with much higher efficiency than the way 

users have traditionally generated flexible bodies for Adams in 

the past also convenient control over modal participation and 

damping. 

 

 

Fig-13: MNF Format Tie Rod in PATRAN 

4.1 Dynamic Analysis of Tie Rod 

Modal analysis is usually used to determine the Natural 

Frequencies and Mode shapes of a component. It can be used as 

the starting point for Dynamic Analysis. The Finite Element 

Analysis codes usually used several mode extraction methods. 

The number of modes was extracted and used to obtain the Tie 

rod stress histories, which is the most important factor in 

analysis.  

4.2 The Equation of Motions of the Suspension 

System 

Based on a Kinetic model of a vibration system, a mathematical 

model can be developed to accomplish the modal analysis. It is 

critical for modal analysis to develop the mathematical model. 

Accuracy degree of a model should affect analysis result directly. 

A general kinetic model is 

[M] { (t)}+[C] { (t)}+[ K]{x(t)}= {F(t)}                        [16] 

Where, [M] =Total mass matrix,  
               [C] = Equivalent damping matrix, 
               [K] = Stiffness matrix, 

               X (t) = Displacement, 

               F (t) = External load. 

A model analysis equation when an external exciting force 

is zero [F (t) =0]. 

[M] {x(t)}+[C] {x(t)}+[ K]{x(t)}= 0                         [17] 

Equation (17) shows that vibration amplitude of a Tie Rod 

should be attenuated during process of vibration. 

4.3 Mode Shapes 
Using this method to obtain the 8 modes of the Tie Rod, which 

are shown in Table.1 and the corresponding shape of the mode, 

are shows in Figure 14-21.  

 

 

Fig-14: Mode-7 

 

Fig-15: Mode-8 
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Fig-16: Mode-9 

 

Fig-17: Mode-10 

Fig-18: Mode-11 

 

Fig-19: Mode-12 

 

Fig-20: Mode-13 

Fig-21: Mode-14 
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Table -1: Natural Frequency of Tie Rod 

Mode No. Frequency in Hz 

7 1021.9 

8 1024.9 

9 2749.3 

10 2814.0 

11 5203.6 

12 5305.6 

13 7073.3 

14 8333.3 

 

5. CONCLUSIONS 

In this study, build co-simulation model of Double Wishbone 

Suspension and Steering Model System respectively in ADAMS 

and MATLAB, design the interface between mechanical system 

and control system and get the response performance of Double 

Wishbone Suspension and Steering Model System. The system 

has good tracking ability and co-simulation result verifies that. 

Also, its dynamic performance meets the design requirement. 

What’s more, modeling in ADAMS, it is beneficial to avoid solving 

dynamic equations and to observe motion process visualized. 

Using MATLAB /SIMULINK toolbox, we operate the whole 

process simply and program efficiently and quickly. And we get 

lots of design parameters from co-simulation, which is useful for 

subsequent research. Co-simulated method takes advantages 

between ADAMS and MATLAB/SIMULINK software’s, with 

Enhancing Dynamic Performance of Double Wishbone 

Suspension and Steering Model System, improving efficiency, and 

saving Time. For the complex control system, it is a good solution 

to solve the problem. The Results of the Frequency from modes 

shapes are used for Re-design process. 

REFERENCES 

[1] Mike Blundell and Damaion Harty, Multibody System 
Approaches to Vehicle Dynamics, 2004. 
[2]  Gu, M.Y., R.R. Qin and D.Y. Yang, 2005. Co-simulated Research 

method of robot arm dynamics in ADAMS and MATLAB. Mach. 

Des., 1: 227-228.  

[3] Li, S.Q. and H. Le, 2011. Co-simulation study of vehicle ESP 

system based on ADAMS and MATLAB. J. Softw., 6(5): 866-950. 

Li, H.,  

[4] B.H. Fan and Q. Liu, 2007a. Research on co-simulation based 

on ADAMS and MATLAB. Sci. Technol. Inform., 8: 152. 

[5] M. Arnold, B. Burgermeister, and A. Eichberger. Linearly 

implicit time integration methods in real-time applications: DAEs 

and stiff ODEs. Multibody System Dynamics, 17(2–3):99–117, 

2007. 

[6]  Li, S.H., S.P. Yang and H.Y. Li, 2007b. Semi-active control co-

simulation of automotive suspension based on ADAMS and 

MATLAB. J. Syst. Simul., 19(10): 2304-2307. 

[7] Liu, G.J., M. Wang and B. He, 2009. Co-simulation of 

autonomous underwater vehicle based on ADAMS and 

MATLAB/SIMULINK. Chinese J. Mech. Eng., 45(10): 22-29. 

[8] Zouhaier Affi., ADAMS/Simulink interface for Dynamic 

Modeling and Control of Closed Loop Mechanism.Tunisia. 

[9] MSC ADAMS Flexible Body Integration Tutorials. 

[10] Lu You-Fang. Flexible multi-body dynamics[M].Beijing: 

Higher Education Press, 1996 


