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Abstract: The Adomian decomposition
method (ADM) is a non numerical method for
solving a wide variety of functional equations
and usually gets the solution in a series form.
System of fractional partial differential equation
which has numerous applications in many fields
of science is considered. Adomian
decomposition method, a novel method is used
to solve these type of equations. The solutions
are derived in convergent series form which
shows the effectiveness of the method for
solving a wide variety of fractional differential
equations.
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Introduction
In recent years, considerable interest in
fractional differential equations has been

stimulated due to their numerous applications in
many fields of science and engineering[9,10].
One of these applications, @ Adomian
decomposition method (ADM)introduced by
Adomian (1980), provides an effective
procedure for finding explicit and numerical
solutions of a wider and general class of
differential systems representing real physical
problems [2,3]. This method efficiently works
for initial value or boundary value problems, for

linear or nonlinear, ordinary or partial
differential equations[5,6], and even for
stochastic systems as well. Moreover, no

linearization or perturbation is required in this
method.

2. PRELIMINARIES AND NOTATIONS:
If

f(t) is continous on an interval [a,b] and 0 <
o =1
,then the operator I+ ,defined by

I§+ f(tj=$ £ Fle) ds (1)

E.l:r_s}‘_—lx
is called the Riemann- Liouville fractional

integral operator of order a. Here I'(.) is the

Gamma function.
The Caputo time fractional derivative of order

a=0 [16], is defined as:

= i
Dfu(x,t) = g utwd) ;r;m} =

mo_
L f;(t—ij_'x_i—a ulxe) Jm—1<a<m)

rim—-m) g™
™ w () _
= , (m=a & N)
.......... (2)
Lemma 1(See [1])
Let p.g =0,f(t) € L;[0,T]. Then

I§+I§+f(tj = Ig:ﬁ"f(t} = I§+I§+f(t:] is satisfied

almost everywhere on[0,T]. Moreover, if
f(t) € L;[0,T], then the above equation is true
forall t € [0,T].

Lemma2 (See [1])
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If a =0,f(t) € L,[0,T], then

epe, I+ f(£) = f (1), forall t € [0,T]

Basic
Method

idea of Adomian Decomposition

Consider the differential equation.

Lu+Ru+Nu=g (3)
Where
L - Highest order derivative and easily

invertible.
R - Linear differential operator of order less
than L,

g - Source term.

Nu -Represents the nonlinear terms. The

function, u(t) is assumed to be bounded for all
te I=[0,T] and the nonlinear term Nu satisfies

Lipschitz condition i.e. |Nu-Nv|<L4 |u-v|. Where
L, is a positive constant.

Because L is invertible, we get
u=d+L'g—LRu—L"Nu (4

Where ¢ is the integration constant and satisfies

Lo =0and
L) =f ()dt

The unkown function u is given by the infinite
series,

u(x,t) = Lizo un(x 1) (5)

And the nonlinear term Nuwill be decomposed

by the infinite series of Adomian polynomials

Nu=3X""p A, (uguy, .., u,) (6)

Where A, is Adomian polynomial calculated by

using the formula
An = ni [:TIH N [v[ﬂ,:])]

n=1012,..

r
A=0

Where

v(d) = Z Atu,
n=0

Substituting the decomposition series Eq. (5)
and Eq. (6) into Eq. (4), gives

E:::ﬁun (x!t:] =
¢ +L7 g — LT R(Zypu, (1)) —
n=oAn (Ug g U, 1y,

(7)
From the above equation, we observe that
uy=¢@+L'g
uy = —L7H(Rug) — L7H(A4y)

u, = —L7H(Ruy) — L7H(4,)

u,.y =—LYRu,)—L(4) , n20

Where @ is the initial condition.

Hence all terms of u are calculated and the
general solution obtained according to ADM as
u(x,t) =X u,(xt)

The convergence of this series has been proved

8].

Now, we apply Adomian decomposition method
to derive the solution of fractional partial
differential equations.We solve five examples by
Adomian Decomposition Method.
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Firstly, we apply the Adomian decomposition —u du, tu du, 1y dug
method to obtain approximate solutions of IVPs U ax 1 a3y 2 Ax
for fractional BBM-Burger’s equation with £ = 1 o

Similarly
Example 1. 3 3 3 3
3 i 3 . u A (s (s

Consider now the following equation: A, =1, _ 3 +uy _ 2 1 u, : 1_|_uE B 0

d%u(x,t) * *
T [Lﬂu[x, t:]) [u[x, t)L u[x,t])
Where L. = 5° =2 And so on

ax® '’ * dx
_ o o From (7), we get
With the initial condition

. ulx,t) =
u(x,0) = sinx, (x,t) €[0,1] x (0,T]

@"’fm(z:::ﬂ(f'xx n:]j
a7 - )r [:E D[:}l :]:]

And the fractional differential operator -z
defined by (2).Let /%be the inverse of the u, = ¢ = u(x,0)

operator I: = ,how applying J® to the both sides  wu; =J%(L  u,) — J*(4,)

of (10), we get uy = J(Luy) — J%(A,)
u(x,t) = ¢ + J(Lu) — J*(Nu)
WhereNu’ =u L.‘ru T"'I':*:+1 =IE(LII n:] f (A :]

In order to solve our problem,we must

generalize these Adomian polynomials in By substituting the values ofitg, i, ... from above,
follows. we get the solution of the IVP

Z‘,:LE 5 i}lf -0 u[:x’t:] =uD+u1+".+un+'"
n!|dan 3x i M= |
=0 A=0

uy = u(x,0) = f(x) =sinx

T

The first few terms of the Adomian polynomials %3 = J*(Lue) —J%(4g)

are derived as follows

1 " _ 1
A dug _F(rx]J; (‘-‘—E‘jl_“‘f ()8 r(‘*jJ; (t—8)i= 4
= 4, —
0 ° ax S fi(x) -
1|d [( 2 j(ﬂuﬁ N ,15”1)]] 1 Ia+1)
= —|—|(u uy )| — -
aalte T NG T Where £,(x) = —f" () + F()F'(2)
_ . Ouy du,y = sin(x)(1+ cos x).
=u, E +u13x1 o .
uy = J(Lypuy) —J%(44)
1]d? au du, #2a
A, = (ug + Auy +4%%) = ] — -
lecﬂ o ( 4o ax) _, =falx ]r(z D
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Wheref; (x) = fi'(x) — f(x)ff (x) — A(x)f'(x) d%u du d*u 8*u du

=-—u—+-—-— + -
a4 3 2
= sin? (x) + [-1 — 5cosx —cos®x — ot 9x  9x® 0x7 0Ox

[:1 + CDS.’I:] COS x] sin x = —u[x,t] L:ru(xr t:] + L:r:r:ru[x: tj - L:r:ru(x! t:] + L:rd‘
a° a® a
Where L:r:rx = 3.= ’L:r:r =Tz J"l:":r =4
_re(a) = 1 [ 1 du,  du;  du, i Az B 8z
Uy =) ) = F(ajJ; (t-g)t-= Y9y "M% 7% 5% And the fractional DZ defined as Eq. (2) we know
ug = J%(L, 1) — J%(A,) that /¢ is inverse of the operator D
£ 3= Now applying [“ to the both side of the given
F(3a+1) Eq., we obtain.
Similarly u(xt) = ¢ = JH(Nu) + ] (L) —J* (L) +7%(L,
fd- (.’Ij 4 du
=" _t4a Nu =u->
Uy r(4a + 1) Where Nu = u
The first few terms of the Adomian polynomials
are given by:
A .
" I'lna+1) dug

Ay = uu—a
x
The solution of the equation in series is given by

, . p du, N du,
tﬂ' t.ﬂ taﬂ tﬂﬂ 1 — ul}_ ul_
Jt = ] DX T i - ax 52:
et f(x)+F(a+1]f1(x]+F(2a+1)f(x]+1“(3a+1)ﬁx) ' +F(m+1)f‘(x)+
4 du, N du N dug
i s = Up—— T Uy — T Us——
=2n=0 J_I::E D f.(x) , Where f;(x) is an initial - 0 Ax 1ax < 9x
condition.
And so on

Next, we will solve a more general system of From (7), we get

o o o o o

nonlinear fractional differential equations. Zu (54 :@_mZA gty D”ﬂ(zﬁ w)- F(ZL . ]+jE[ZL w)
Example 2. n=l n=0 n=0 n=0 n=0

Consider the following of nonlinear fractional [tis clear that:

differential equation: uy = —J%Ay +JL g — UL ug + 5Ly,
9%u  d*u d*u du du
dte ax® ox? ox  “ox

(x,t) EQx(0,T]and0 <= a =1

0 Uy = _-Fz‘qi +f¢£"x:r:ru1 - fﬂL:r:rui + IELI

Ups1 = _J’EAH +f¢£":r:r:run _IEL:{I +f¢£"xun'
With the initial condition u(x,0) = f(x)

By substituting the value of uy , 14, ...
Where f(x) = cosx

From Eq. (20), we get the solution of the IVP
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u(x,t] = Uy + 'u,l—|- U, _|_..._|_.un + .-

Uy =u(x,0) = f(x) = cosx uy = =J%4y + J* (L, ) — JH(L ) + 2L ,0y)

_ ) -+ ) - () ca
e+ 1)
tE
= A0 TS
Where
filxe) = Fl)f' () = £ 00 + F7(x) — (=)

=(—sinx— 1)cosx —2sinx

u: = _fﬂ:(fll:] + IE(Lxxxul:] _IE[L:{:{ulj + IE(LIR:‘-]

__hHk) 12
r(2a+ 1)

Where

H)=-[f)+ )+ A0)f () -
1 ()= f{(x)]

|'|'|' (x:] +

= cos’x + 3cos’x 4 ((— sinx — 1) sinx — 2sinx — 1) cosx — 5sin“x —2sinz,

similarly

. = f3(x) L3a
} r(Ga+1)

y = fulx) ina
" I'(na+1)
g t!ﬁ tM
u(x,t) :f(xJerfl(xJ + mfz(x) +'"+mﬁ;(ﬂ e
= Ln=0 i i fo(x)Where f,(x)is an initial

condition.

In the following example, we try to find the solve

of another nonlinear fractional equation

Example 3.

Consider the following of nonlinear fractional
equation:-

Dfu+Diu—D,u+u*=0

0=x=<1,0=t=1, 0=<a=1

With initial condition
u(x,0) = ¢ = f(x) = x%,

(x,t) e x [0,T]
Note that here 21 = (0,1)

The standard form of the fractional equation an
operator form is
DFu=—[u(x,t)]* — L ulxt) + L, ulx,t)

Where L., 5 L =3
ﬂzr * dx

Dfdefined in (2)

and the fractional

differential  operator

respectively.

J¥is the inverse of DZ

Now applying/“to the both side of our Eq. we
obtain
u(x,t)
Where Nu = u? , according to the decomposition

method, we assume series solution for the

unknown function u(x,t)in the form

= =)

u(x,t) = Z u, (x,t)

n=0

In order to solve our problem, we must

generalize these Adomian polynomials as
follows:
An = [d.l" [E Aiui)[ziﬂiiui)]jzu

, n=20,1,..
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-

Ay =up.ug =ug

d
A4, = ﬁ [(uu + '11"'1)- (uu + *11"'1:”.1:&

= Ugly + U Uy = 2uglly
1 d°
4y = 21 dAz —— [(ug + Auy + Auy) (ug + Auy + A2u,y)]

= 2ugu, +uj

1 d°
A = 31443

= 2ugug + 2u,u,

And so on

From (7), we get

w w o2 o

) 0(s) =0 ~J() 4ty 1) L))+ () (L)

=) =) e e
From the above equation, we observe that
up = u(x,0) = f(x)

uy = —J(Ag) = JH(Lug) +T%(Lup)

uy = —J(Ay) — ] (Lewy) +75(Lwy)

1 = _fﬁi(ﬂnj - .!E(L;m;:unj +J(E[:L:;:un]
By substituting the values of uy , 1y, ...,
we get solutions of the IVP

U=UgHU g+l o+ .+, +

u, = ul(x,0) = f(x) = x*
uy = —J%(A4p) — J*(Lowrty) +7%(L (1))
tﬂ‘.’
“ ™

Where
fE) =(FE)) +F(x) - f'(x) =x*—2x+2

— (g 4+ Auwy + Py + Pug) (g + dug + P2y + Pug)]io,

4 t*
_2x+2[}”(rx+ 1)]
uy = —J*(Ay) — J(Luy) + T (L)

t:ﬁ:
“rGarn %
Where £, (x) = —[2f () 4 (x) + f{"(x) = £ ()]

=—2x°+8x7+2

Ug = _fﬁul:) - fﬁ(Lmu:] + IE(L;,;”:]

s3a

= mfa (x)

Where

fix) = —2f()fa(x) — 2f7(x) — " (x) + (%)
=3x%—8x° +40x* —8x% + 24x — 20

Similarly

A

Uy = mﬁ;(?ﬂ]

U, = mfn (x)

The solution of the considered IVP is given by

u(nt) = )+ 75 A + 1a gy A+
= = ur,nﬁﬂf(x:]

Where f, (x) = u(x,0), is initial condition.

Also, in the next example, we solve a system of
nonlinear equations with fractional orders
Example 4.

Consider the system of initial value problem

(IVP) of fractional equations
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Dfu=uD,ut+vD, u

Difv=uDyv+vD,v

Where0 < a < land(x,t) € 0, (0,T], and with
the initial condition.
u(x,y,0) = f(x,¥)
g(x,y)
Not that2 = (0,1)

v(x,y,0) = X,V EN

The above system can be written in the

equivalent form

J%u du du
=u—+v—

ate dx ay

d%v dv dv

EPe: HE-F’U'&—}F

N, () = 5u+ du
e v dx v dy
N, (u,v) = dv N dv
2tV uﬁx vﬂv
Lu = Ny (w,v)

Lv = N,(u,v)

Applying L™*(.) =J% to both sides ofEq.(28)
yields.

u(x,y,t) = &+ J*Ny (u,v)

v(x,y,t) =& +J*N,(u,v)

Where the nonlinear operator N;(u,v) and
N,(u,v)are them written in the decomposition

form

oo

Ny(wv) = Z A, (g, g, e, tty,)
n=0

=)

N,(u,v) = Z B, (vy, vy, -, V)

n=10

Where 4, and B,are the Adomian polynomials

of the following form

nl |dan N 1 () (Z Au )]

T

n

;;n N, (u,v) (i V:‘)]
A=0

i=0

,n=01,..

generalize these Adomian polynomials in

follows.

" [dA‘ (E )(;_x
(E oAV, ) (ai}.

4 ?;D‘liui}—i_

?::DAEHJLZ :

V]

A= du, du, du, du, du,

27 Moy TG, TGy TGy Ty
Similarly
= 3u3+ 3u3+ 3u2+ 3u2+ 3u1+ 3u1 du,  du,
TR Ty T Ty T Yy B Yy

And so on
Now, to calculated our problem we must

generalize these Adomian polynomials in follows
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2 R B ) .
n= . : Vil 52 ) A ' o
| dA 0x L 6}?i:u - v, = J%B,
=0,1,2,.. .
" 1 —f An
=JIEB;-:
du, dv,
Bo=uom -+ v By substituting the values
. av, . av, . v, . av, ofig , 1y, ...Andvy ,v; ....we get a solution of the
17 Mog, TG, TG, TG, IVP.
dv, dv, dv, dv, dv, dv, Ug = u(x,y,0) = f(x.¥)

dx dy dx " dy dx W vy =v(xy,0) = g(xy)

dvg dyy  dv, Ay, dv  dy dyy Oy du, du,

PBmu Ayt Ay A L - e ) = J‘ [ ]dﬂ
dx dy dx dy  “dx dy dx dy U1 J%(Ag) r(a) . t— @)= Uy Ix + v, 3y

And so on ¢
From (7), we obtain =hley) I'a+1)
= Where
Z U (X’F’ t:] = u[:x,],r, ﬂ] t A F () 8 F )
= ﬂmﬁ=—ﬁ&¢%;;+mmﬂ—;ﬁ
+IE[:E::C=Dan (u[:lrulf ---runj:] _ ﬂ: _ J‘ |: avl} + avl}:l de
, A e A E]l @ 3y
Z v, (xy,t) = v(xy 0) +
n=0 =g,(x,¥) CTE))
‘H"I(Z B, (ug iy, ..., u,)) Where

8g(x) 29(x)
9:1(xy) = = [fe ) E22 + g(x.y) ga—}}]

-

;ﬂ‘.’

The associated decomposition is given by

ug = ulx,y, 0)1,,,=F(Ny (u,,v,)) u, =J%(4) = (%) =

N2a+1
VD = v(x!}rr ﬂj;vn +1:;E[N2 (unrvnj:] ) n:011;2;"- ( :]
) ) Where
Then, According to the above equations we get, ) - ) )
0fy(xy of, flay of(xy
ug = u(x,y,0) )= |l = o) = =4l 5 ) =
vy = v(x,v,0) 12a
u1=fﬁ:f1ul EJE:.I g“( ]1—'(2 _|_1]

=IEB‘D
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Where

ag‘_ I:I-':’-} ﬂ_g._ ':I,_‘)'::'
f(x,}r] P + (.’I V] B_‘,_' +

El_gl:r}}
V=

g,(x,y) =
E‘g'::r,}]'
fl Ex’};r:] Ax 1(

By induction, we have

H(X,}F;t] = Zun = uD+u1+u2 + ..._|_.]-_’IL?‘2 _|____
n=0

i tEa

= Fe) + A sy Hh )

oo

n=0

a ln t.".a:

=)t o)t el

I(na+1)

Finally, we apply the Adomian decomposition
method to obtain approximate solutions of IVPs

for fractional BBM-Burger’s equation with £ = 1

Example 5.
Consider the initial value problem (IVP) for

fractional BEM_Burger's equation of the form

d%u d*u du

dtT  dx?Z Tu ﬁx

=0

Where 0 <X a = 1 and with initial condition
u(x,0) = ¢ = f(x) = sin(x),x €12 % (0,T]
Note that here 2 = (0,1),the standard form of
the fractional BBEM_Burger's equation in an

operator form

J%u B 9%u Ju
9t 9x?  ax
d%u(x,t)

3 [L_T__ru(x t:]) [u[x t)L ulx, t:])

T'(2a+ 1)

totg(ny) =t

WhereLH=aT , L,=—

o

And the fractional differential operator —=

defined in equation (2), respectively we know
alx

that J® which is invers of the operator-7 , now

aa;

applying/“ to the both sides of our Eq., we get

u(x,t) =+ J*(L,w) — J*(Nu)
s MRy

In order to solve our problem we must
generalize these Adomian polynomials as

follows.
4, =1 [T ) S (T

n==012,..

]L:u ’

dug

Ay = uD_ﬁx

du, du,
41T o, TGy

du du, du,
A, =u,—24+u,—>+u,—=
< 0 ax + 1 a. + & dx

And so on
Thus

u(x,t) = @ + J*(Zrzo (Lexn)) —J(Zr=o(4,)),

u; = ¢ = u(x,0)
ul = IE[:LIIH‘I}:] - fﬂ:(ﬂﬂl]
Uy = J¥(Luy) — J9(A;)

=] (Lxun) = J%(4,)
Consequently

u(x,t] = Uy + u1-|- U, _|_..._|_un + -
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uy =u(x,0) = f(x) =sinx

fi(x) sa
Ma+1)

Where f;(x) = —f"(x) + f(x) f'(x)
=sinx)(1 + cosx)

= J¥(Loguo) —J%(4g) =

e « _ h(x)
uy =J(Luy) —J%(4;) = ml‘
Where
flx)=

1 () — F)f () —

A (x)

nonlinear partial equations. We demonstrated
that the decomposition procedure is quite
efficient to determine the exact solutions.
However, the method gives a simple powerful
tool for obtaining the solutions without a need
for large size of computations. It is also worth
noting that the advantage of this method
sometimes displays a fast convergence of the
solutions. In addition, the numerical results
which obtained by this method indicate a high
degree of accuracy, also efficiency of the desired
results.
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