
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 288

A Survey on Embedded Mobile Database Management System using

Mobile Agent

Dr. A. Priya1

1 Assistant Professor, Department of Computer Science, Thiruvalluvar University College of Arts and Science,
Tirupattur, Tamil Nadu, India

---***---
Abstract - With the recent development of mobile
communication technology and the mobile computer,
the embedded real time database formed by the
combination of mobile computing real time application
and embedded environment has already become the
emerging hot subject in the field of database system. In
this paper, the simulation of access points, which
represents the structured principles of embedded
mobile database on mobile agent. In order prove this an
analysis of embedded mobile database based on mobile
agent (Jag), showing that mobile agent and embedded
mobile database are rarely incompatible. Combing the
characteristics of embedded mobile and real-time
environment and fully considering broadcast strategy
the feature and data feature of real-time database
system transaction, a new set of design idea for
concurrency control algorithm at clients and server,
which consider the promotion of hit rate of buffer page
and finish rate on time for real-time transaction as the
goal, is put forward in this paper.

Key Words: Embedded Database System, Mobile

Database, Mobile Agent

1. INTRODUCTION

Comparing with traditional database management system,
embedded mobile real time environment could support
more new application digital information service, public
information release, the user could understand
information such as news stock and weather with wireless
portable equipment and make decision timely; for military
operation, each soldier or combat equipment shall deal
with battlefield information and exchange with server in
real time as independent system unit, then server will
integrate the mobile information of each unit to guide the
action of the whole battlefield; for e-commerce, with the
change of users’ location, database query will always
display the newest and most effective proper business
information to meet the special requirements for locations
and remote operations by business users [1].

The objective of this paper is to develop database
management system under embedded mobile real time
environment, which could effectively manage the database
in mobile end and the database in server. Embedded
mobile database and mobile agent, while technical in
theory, have not until recently been considered extensive.
In order to accomplish this intent, the new adaptive
information (Jag), which is used to validate the systems
and rasterization can interfere to overcome this challenge.
Jag is connected neural networks. It is viewed in
cryptography as following a cycle of four phases:
construction, allowance, analysis, and development.

As an important computer science, database system has
developed for several decades. With the wide application
of embedded system, the continuous popularization of
Embedded RTOS (Embedded Real Time Operation
System) and the quick development of mobile
communication technology, the problem of data
management under embedded mobile real time
environment becomes important link in the system, the
embedded real time database formed by the combination
of mobile computing real time application and embedded
environment has already become the emerging hot subject
in the field of database system.

2. METHODOLOGY

Figure 1 shows, a modular tool for investigating the
producer-consumer problem. This may or may not
actually hold in reality. Suppose that there exists scalable
technology such that we can easily emulate mobile agent.
On a similar note, we estimate that interposable
archetypes can allow e-business without needing to locate
I/O automata [2]. The design for our application consists
of four independent components: the improvement of
information retrieval systems, wireless algorithms, the
partition table, and reliable archetypes. A novel
application for the evaluation of active networks is shown
in Figure 1. Thus, the methodology that our system uses
holds for most cases.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 289

Figure 1: Jag's relational refinement.

Figure 2: Based on mobile agent embedded mobile database system model

Figure 2 shows the how to construct a framework for how
our application might behave in theory. Furthermore, it is
consider an algorithm consisting of n multi-processors.
The model for our system consists of four independent
components: digital-to-analog converters, information
retrieval systems, trainable archetypes, and robust
symmetries.

3. THE NEW ENVIRONMENT - MOBILE AND EMBEDDED

Application components can run on different tiers, in
different service boundaries, and on different platforms.
Recent advances in processors, memory, storage, and
connectivity have paved the way for next generation
applications that are data-driven, whose data can reside
anywhere and that support access from anywhere [3] [4].
Memory sizes have gone up and prices have come down
significantly; with 64 bit addressability, it is not
uncommon to configure servers with 8 – 16GB of memory,
and desktops with 2 – 4GBs of memory. These new breeds
of applications fall into one or more of the following
categories:

3.1. MOBILE

As more users adopt Wi-Fi enabled laptops, and with
increasingly capable mobile devices, the need for mobile
applications is increasing. Applications like Email,
Calendaring, CRM (Customer Relationship Management)
are already targeting mobile devices. Middleware
infrastructures like application servers and workflow
services are becoming mobile-aware. Some reasons for
such mobility trends are:

• More employees are mobile. Email and offline
access is becoming pervasive.

• Mobile usage is broadening. Mobile usage is
already prevalent in certain vertical domains like
Healthcare, Insurance, and Field Services.

• Mobile applications are more than just browser
windows – more and more applications now run
natively on mobile devices.

Data management and access on mobile devices is central
to mobile applications. Even data that was traditionally
stored in PCs is migrating to the web (cloud), thereby
unlocking the data access from a specific location. Mobile
devices complete the anywhere data access vision – they
provide access from anywhere. Smart mobile devices
combine multiple functions of phones, media players, PCs,
etc. Such devices are becoming powerful in their
processing power and provide larger storage capacity.
These advances provide data access and also enable
caching of data that can be processed offline [5].

3.2. STREAMING

Conventional database systems require data to be first
loaded into the database; then the operation is performed,
and the data may be later removed from the database. This
adds significant complexity to the application, and
dramatically reduces its performance and throughput.
Spurious events are filtered; related products are
aggregated; the event data is transformed and presented
on a monitoring dashboard in real-time. The event
processing is data-centric and typically requires an in-
memory rules engine and query processing.

3.3. DISCONNECTED

Distributed and disconnected application architectures
fundamentally change the way applications access and
manage data. Instead of locking data in a central location,
data is moved closer to the applications, and this enables
data processing to be performed in an autonomous and
efficient fashion. These applications may in the mid-tier,
on desktops, or on mobile devices. Such an environment is
inherently disconnected – there is no need for continuous
connectivity between the data sources [6]. Data may be
accessed from its original sources, transformed and
cached (or stored) close to the applications.

For example, consider a product catalog application
aggregating product information across multiple backend
application and data sources. Operations against such an

R M

Client Client
Agent

Mobile
Agent

Database
Agent

Database

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 290

aggregate catalog require them to be decomposed into
operations on the underlying sources [7]. After the
underlying operations are invoked, responses are
collected, and results are aggregated into cohesive
responses to the end users and businesses. A typical
Catalog Browse operation iterates over a large amount of
product data, filters it, personalizes it, and then presents
the selected data to the users. These operations are data-
centric i.e. they require accessing and querying backend
data. Accessing large sets of backend data for every catalog
operation can be prohibitively expensive, and can
significantly impact the response time and throughput.
Caching and querying is therefore a key mechanism in
application servers for performance and functionality.

3.4. EMBEDDED

Many applications perform simple to moderate
manipulation of data. They need a way of storing,
retrieving and manipulating data within the application.
These applications themselves are not complex in nature,
and are designed to meet a specific user need. Typically,
they are developed by vendors specializing in industry
verticals (domains) – e.g. Healthcare, Finance etc. These
vendors are domain experts but not database specialists.

Their focus is the application and would rather not spend
their time in database system installation, deployment,
and management. While synchronization with backend
databases is important, this is typically never seen by the
application developer. The databases are typically single
application databases; the applications do not want to
share (or coordinate) their database with others [8].

These applications could run on devices, desktops, or
servers. The ideal way of deployment is deploying the
database system components along with the application as
a single install. Additionally, different applications may
have varying needs from the database system – some may
require only ISAM access, while others may require
general query support; still others may require
synchronization with backend database systems.

While the vertical (embedded) application domain is
rapidly growing, traditional DBMS vendors have not paid
attention to their needs. Therefore, application vendors
have used home grown components for data management
using technologies they are familiar with. Files, XML, a
rudimentary store and retrieve mechanism, or custom
data management implementations are some techniques
employed.

Consequently, application developers are looking to DBMS
vendors for better support for embedded databases to

enable their scenarios. It is important to note that new
environments and applications span hardware tiers – from
devices to desktops to servers and clusters and must work
in all tiers.

4. METHOD FOR MANAGEMENT OF DATABASE BUFFER

4.1. Operational Principle

Buffer manager is an important parts of database
management system, staying in the bottom of DBMS. As a
subsection internal storage, buffer manager is divided into
portions with equal size which is named framework and
could accommodate one or more web pages [8] [9]. And
for convenience, the size of framework is set to be equal
with that of disk block. Buffer manager serve high-level
module, the principle of the interaction is as follows:

i. First, the module in buffer makes a request of service

to buffer manager
ii. Second, gives the number of the web page needed for

visit,
iii. Third, the work done by buffer manager are listed as

follows:
a. Search shall be made to inspect whether the

requested web page is in the buffer. If it is found,
the address of internal storage framework
belonging to the web page shall be returned to the
caller.

b. Idle framework shall be looked for. If the
requested web page is not in buffer, the
inspection shall be made to confirm whether a
framework not containing effective web page
exists.

c. The replaced web page shall be confirmed. If the
idle framework is not exist, a framework
containing effective web page shall be found to be
replaced for offering to new caller. If the web page
that could be removed is not found, alarm shall be
made.

d. The revised web page shall be wrote back to disk.
If the displaced web page is revised in buffer, it
shall be wrote back to corresponding disk block
according to log agreement. If the displaced web
page is not revised in buffer, it could be overlaid
simply.

e. The address of framework shall be established to
confirm which framework shall be used to
accommodate the requested web page.

f. The address of module shall be confirmed to use
file catalog and basic description entry of files to
transform identifier of web page to corresponding
descriptor and module number of file according to
agreed rules, to read this module into the selected

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 291

internal storage framework, then to make buffer
manager return the address of framework to the
caller.

Figure 3: Classification Chart of DBMS Buffer Search Strategy

4.2. Main Task

The main tasks of buffer management include: the search
of buffered page distribution of buffer and the
displacement of buffered page.

a) The Search of Buffered Page

When a request of page visit is received, database manager
will search in buffer firstly to seek whether the
corresponding page is in buffer. Because the request of
page visit in database system is very frequent, the
effectiveness of search strategy is very important.
According to different search strategy, the classifications
indicated in Figure 3 are as follows:

b) Distribution of Buffer

Buffer allocation algorithm of DBMS buffer manager is
buffer framework that could be used for the allocation of
concurrent transaction in database. This algorithm is close
with replacement algorithm of buffered web page.
Allocation algorithm of buffered web page and
replacement algorithm is the same algorithm sometimes,
but used to allocate buffered page and replaced page (such
as global MRU and LRU algorithm) to various transaction
at the same time. But the allocation of buffered and the
election of displaced page are logically different things. In
better implementation, buffer allocation algorithm shall be
considered separately. In order to design better allocated
web page and displacement algorithm, the visit
characteristic of database transaction shall be fully
considered.

c) The Displacement of Buffered Page

If a logical visit fails, this means that the requested page
couldn’t be found in buffer after the acceptance of page
visit of a transaction by buffer manager, buffer manager
seeks idle framework and fails, when certain strategy shall
be complied with to select a web page to replace new page
and vacate framework, this is called the displacement of
buffered page. Which page shall be decided to be displaced
is the key problem. If the page just displaced is requested
to be called in again in later request, it will increase the
spending of system and the time for response [10]. So, a
proper strategy shall be sought to displace the page that is
most impossible to be used, which is the objective pursued
by the design of high-effectiveness buffer displacement
algorithm.

5. MOBILE AND EMBEDDED APPLICATIONS

In this section, it provides the characteristics and
examples of mobile and embedded applications.

5.1. Mobile Applications

In the enterprise space, mobile sales personnel will
require CRM applications running on their mobile devices;
field service employees will need the ability to check
product specifications and perform on-line ordering from
mobile devices. Following is a list of some representative
mobile application scenarios [11] [12]. These are real
examples taken from Microsoft’s SQL Server Compact
Edition customer scenarios, but apply to any mobile
DBMS.

• Route Delivery Management: Drivers get route data

on a daily basis that is synchronized when they dock

Indirect Search

Direct Search

Search Strategy

Hash Table

Sorted Table

Linked List

Non-Sorted Table

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 292

their mobile devices. Mobile DMBS provides the local
data store on the devices and the data is synchronized
to a backend data source.

• Utilities Consumption Reading: The solution
provides an end to end capability for reading of Oil,
Water, Gas and Electricity meters. Field staff use
Pocket PC devices to capture meter readings and
companies are interested in making the application
available through smart phones also.

• Mobile CRM: Mobile CRM provides SFA and CRM
solution on the devices. The solution typically
integrates into other ERP applications. The DBMS
provides the local data store and data synchronization
mechanisms. The replication mechanisms work over a
variety of transports.

• Sensor Databases: Data collected by the sensor
devices is stored in the local DBMS on the device. Such
mobile DBMS systems must operate on extremely
constrained configurations. The sensor devices are
typically placed in remote locations and monitored
from a central site. Such monitoring requires data
from individual DBMSs to be queried and aggregated.
The network of sensor DBMSs forms a sensor network
of federated DBMSs that is query able from the central
site.

5.2. Embedded Applications

Most mobile applications are embedded applications and
typically mid-tier applications are embedded and embed a
database system for performance and manageability. Also,
most low-end applications are embedded [13].

These applications are self-managed, self-hosted, and very
portable. They are developed using simple-to-use
developer tools and are also used as offline/local
applications. Following are some examples of embedded
database applications.

• Desktop Media Applications: The SQL CE DBMS
is used as an embedded database system for
storing this media data; Media Player Playlists
and Ratings are stored for efficient organization
and query; Photo Organization data is stored for
flexible organization and ad-hoc query.

• Line of Business Applications (LOB): Typical
LOB applications are multi-tier applications
where data in the back-end data source tends to
be authoritative. Data is cached in the middle-tier
as reference data and application logic executes
over it. This reference data is typically integrated
from multiple backend data/application sources,
transformed into a format suitable for application
logic to process efficiently, and brought close to

the application in the mid-tier. Also, the reference
data is often read-only and suitable for caching
within the application.

• Stream Processing: Stream processing is
different from data processing of traditional
relational database systems. In stream processing
engines, data is processed as it arrives and before
it is stored. In-memory embedded DBMS systems
can be used in such stream processing engines.

6. MOBILE AND EMBEDDED DBMS CHARACTERISTICS

The data access and management requirements of the
applications described above are significantly different
from that of traditional server DBMSs. These new
applications must be able to run on multiple tiers ranging
from devices to servers to web and would benefit from
various existing database mechanisms. However, these
database mechanisms must be unlocked from the
traditional monolithic DBMSs and made available as
embeddable components (e.g. DLLs) that can be
embedded within applications, thereby, enabling them to
meet the requirements described above. Such Mobile and
Embedded DBMSs have the following characteristics:

1. Embeddable in Applications: Mobile and Embedded

DBMSs form an integral part of the application or the
application infrastructure, often requiring no
administration. Database functionality is delivered as
part of the application (or app infrastructure). While
the database must be embeddable as a DLL in
applications, it must also be possible to deploy it as a
stand-alone DBMS with support for multiple
transactions and applications.

2. Small Footprint: For many applications, especially
those that are downloadable, it is important to
minimize DBMS footprint. Since the database system
is part of the application, the size of the DBMS affects
the overall application footprint. In addition to the
small footprint, it is also desirable to have short code
paths for efficient application execution. Most of these
applications do not require the full functionality of
commercial DBMSs; they require simple query and
execute in constrained environments.

3. Run on Mobile Devices: The DBMSs that run on
mobile devices tend to be specialized versions of
mobile and embedded DBMSs. In addition to handling
the memory, disk and processor limitations of these
devices, the DBMS must also run on specialized
operating systems. The DBMS must be able to store
and forward data to the back-end databases as
synchronization with backend systems is critical for
them.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 293

4. Componentized DBMS: Often, to support the small
footprint requirement, it is important to include only
the functionality that is required by the applications.
For example, many simple applications just require
ISAM like record-oriented access. For these
applications, there is no need to include the query
processor, thereby increasing the footprint. Similarly,
many mobile and mid-tier applications require only a
small set of relational operators while others require
XML access and not relational access. So, it should be
possible to pick and choose the desired components.

5. Self Managed DBMS: The embedded DBMS is
invisible to the application user. There can be no DBA
to manage the database and operations like backups,
recovery, indexing, tuning etc. cannot be initiated by a
DBA. If the database crashes, the recovery must start
instantaneously. The database must be self managed
or managed by the application. Also, embedded DBMS
must auto install with the application – it should not
be installed explicitly or independently. Similarly
when the application is shut down, the DBMS must
transparently shutdown.

6. In-Memory DBMS: These are specialized DBMSs
serving applications that require high performance on
data that is small enough to be contained in main
memory. In-memory DBMSs require specialized query
processing and indexing techniques that are
optimized for main memory usage. Such DBMSs also
can support data that may never get persisted.

7. Portable Databases: There are many applications
which require very simple deployment – installing the
application should install the database associated with
it. This requires the database to be highly portable.
Typically, single file databases are ideally suited for
this purpose. Again, there should be no need to install
the DBMS separately – installing the application
installs the DBMS and then copying the database file
completes the application migration.

8. No Code in the Database: Portable database must
also be safe. Executable code can be a carrier of virus
or other threats. By eliminating any code storage in
the database, it can be made safer and portable.

9. Synchronize with Back-End Data Sources: In the
case of mobile and cached scenarios, it must be
possible to synchronize the data with the back-end
data sources. In typical mid-tier caches, the data is
fetched from the back-end databases into the cache,
operated on, and synchronized with the back-end
database.

10. Remote Management: While mobile and embedded
DBMSs must be self managed, it is important to allow
them to be managed remotely also, especially those on
mobile devices. In enterprises, mobile devices must be
configured and managed in a manner compliant with

the company standards. Therefore centralized remote
management of these devices is necessary.

11. Custom Programming Interfaces: An important
usage of embedded DBMS is in specialized data centric
applications. Such applications use variety of data
models and query languages. The embedded DBMSs
must be componentized and extensible to allow
domain-specific query languages and programming
surfaces.

6.1 Mobile vs. Embedded DBMS

While both mobile and embedded DBMSs share many
common characteristics, there are also differences that
separate them, especially in deployment [14]. In fact,
mobile DBMSs are typically embedded DBMSs but
considerably constrained by the environment in which
they must execute and perform. The following table 1
illustrates key differences between the two:

Mobile DBMS Embedded DBMS

Targets device tier.
Supports device scenarios

Targets all tiers.
Deployment is
application-specific.

Constrained by device
physical characteristics

Constrained by
deployment
environment

Power, Memory size
impact the design

Power and media are
not constraint

Size (Small Footprint) is
critical

Small size is important

Componentization is not
critical but helps
minimize size

Componentization is
critical to support
varied deployments

Scale and throughput are
not critical

Scale and throughput
are important

Table 1: Comparison of Mobile DBMS and Embedded
DBMS

6.2. Mobile and Embedded DBMS Design
Considerations

While the architecture of mobile and embedded DBMSs is
similar to that of traditional relational DBMSs, the
characteristics described in the previous section must be
factored in. Some of these characteristics are more critical
than others – componentization, small footprint, and self-
management are by far the most critical characteristics.

A. Componentization

The components of a mobile and embedded DBMS are not
really new but how well the functionality is factored and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 294

layered within and across the components is important.
The key high level components are: Storage Engine, Query
Processor, Data Access APIs, and Synchronization. Since
specialized database systems and embedded applications
know the specific database functionality they desire, it
must be possible to choose the specific components and
functionality. Componentization also provides
extensibility. For example, consider processing of
structured (Relational) and semi-structured (XML) data
with SQL and XQuery respectively.
In implementing DBMSs for such support, a common
storage engine component can be used with two query
processing components, one for SQL and the other for
XQuery. Architecturally, the factor of DBMSs forms an
inverted triangle of components, with one storage engines
at the bottom and multiple query execution engines, query
optimizers, query compilers, APIs layers, and language
bindings at the top [15].

B. Storage Engine

Most storage engines support media management to
record/row management with transactions, recovery, and
efficiency. The storage engine can be componentized as
follows:

• Media Management: While most mobile and

embedded DBMS’s storage engines must support data
on disks, they are also embedded in applications whose
data is primarily memory resident. The storage engine
must turn off persistence to disk and optimize large
memory use. Mobile DBMS storage engines must
support flash media, when they are used in mobile and
sensor devices.

• Transactions: Embedded DBMS must be capable of
supporting concurrency control and transactions.
However, not all embedded applications require the
full ACID properties. Most applications require
atomicity but the other properties can be optional.
Also, when embedded DBMSs are used as application
caches, where the authoritative data comes from
backend data sources, data versioning and multi-
versioned concurrency control can improve the overall
cache performance.

• Access Methods: Since embedded DBMSs are used in
variety of application scenarios in different storage
environments, the storage and access methods must be
optimized to take advantage of this environment.
Similarly hash based access methods are more
appropriate for key based access in large memory
environments.

7. CONCLUSIONS

In embedded mobile real time database management
system, buffer manager offer physical support at bottom
for upper module. With the increased interest in
specialized applications and database systems the need for
Mobile and Embedded DBMSs is increasing. There have
been mobile and embedded DBMS products in the market
that satisfy some of the characteristics described above,
but were designed as low-end database products and do
not factor in the recent hardware and application trends.

The componentized mobile and embedded DBMSs are in
position to adapt to these changing hardware and
software trends more rapidly. Furthermore, the
characteristics of Jag, in relation to those of more infamous
heuristics, are obviously more private. Although such a
claim might seem perverse, it is derived from known
results. In fact, the main contribution of our work is that
we disproved that multicast solutions can be made
"smart", flexible, and ubiquitous. In future this can be
implemented on the Web for public download.

REFERENCES

[1] A.Priya and R.Dhanapal. 2013. “Evaluating the

Query for a Mobile Database System through Dongle
Transaction Model”, International Journal of
Advanced Research in Computer Science and
Software Engineering, Volume 3,Issue 10,October
2013, pp. no.879-887.

[2] A.Priya and R.Dhanapal. 2012. “A Method of
Implementing Dongle Transaction Model in Mobile
Transaction Systems using Mobile
Agents”,European Journal of Scientific Research,Vol.
90 No 4 November 2012, pp. no. 536-549.

[3] A.Priya, “Security Management System for Mobile
Database Transaction Model using Encryption and
Decryption Algorithm”, International Research
Journal of Engineering and Technology,
Volume: 02 Issue: 05, Aug-2015, pp- 1205-1211.

[4] Shahabi C, Zarkesh A M, Adibi J, et al. “Introduction
of buffer management” IEEE Press,2001.

[5] Margo Seltzer. “There is more to data access than
SQL”. In ACM Queue, Databases, Vol. 3 No. 3 - April
2005.

[6] Suman Nath and Aman Kansai. “Dynamic Self-tunig
Database for NAND Flash”. ISPN ’07, April 25 - 27,
2007, Cambridge, Massachusetts, USA.

[7] Backus, J. “Interposable, real-time methodologies for
expert systems”. Journal of Cacheable Archetypes 43
(July 2003), 1-12.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 295

[8] Bose, B. “Improving virtual machines and fiber-optic
cables”. In Proceedings of VLDB (July 2002).

[9] Brown, B. “Exploring the partition table using
wireless communication”. Journal of Peer-to-Peer
Communication 37 (Apr. 2000), 154-193.

[10] Clark, D., Minsky, M., Reddy, R., Jacobson, V., Leary,
T., Miller, N., Sasaki, I., and Hennessy, J. “Simulating
sensor networks using multimodal theory”. In
Proceedings of SIGGRAPH (Sept. 2004).

[11] Jacobson, V. Thedom: “Deployment of sensor
networks”. In Proceedings of the Conference on
Atomic, Omniscient Communication (May 2005).

[12] Kobayashi, C. “A methodology for the visualization
of RAID”. In Proceedings of NDSS (Feb. 2002).

[13] Lee, I. “Decoupling write-back caches from public-
private key pairs in virtual machines”. In
Proceedings of the Symposium on Metamorphic,
Robust Archetypes (Dec. 2004).

[14] Lee, U. “Harnessing model checking and
reinforcement learning using Ail”. In Proceedings of
SIGMETRICS (Oct. 2005).

[15] Moore, J., and Ramasubramanian, V. “Architecting
redundancy using Bayesian epistemologies”. Journal
of Trainable Symmetries 1 (Dec. 2005), 1-17.

BIOGRAPHIES

A.Priya is received her Ph.D in
Computer Science at Bharathiar
University, Coimbatore. She got
her Master degree in Computer
Science and Master of Philosophy
in Computer Science in
Avinashilingam University,
Coimbatore. She is currently
working as an Assistant Professor
in the Department of Computer
Science, Thiruvalluvar University
College of Arts and Science,
Tirupattur, Tamil Nadu, India.
She has 14 years of teaching
experience, 8 years of
administrative experience and 9
years of research experience. Life
time Member in ISTE Chapter.
Organized DRDO sponsored
National Conference in the
Department of Computer
Applications, Velammal
Engineering College, Chennai.
Her publications are four
International Journal, two
International Conference (in IEEE
Proceedings) and eight National
Conferences.

