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Abstract: Traditional information systems struggle with the requirement to provide flexibility and process 
support while still enforcing so medegree of control. Accordingly, adaptive process management systems(PMSs)have 
emerged that provide some flexibility by enabling dynamic process changes during runtime. .Based on the 
assumption that these process changes are recorded explicitly,we present two techniques for mining change logs in 
adaptive PMSs; However the dynamic nature of the modern business environment means these processes are subject 
to an increasingly wide range of variations and must demonstrate flexible approaches to dealing with these 
variations if they are to remain viable .The change processes discovered through process mining provide an 
aggregated overview of all changes that happened so far.Using process mining as an analysis tool wesho win this 
paper how better support can be provided for truly flexible processes by understanding when and why process 
changes become necessary. 
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1.INTRODUCTION 
In order to retain their competitive advantage in today’s 
dynamic marketplace, it is increasingly necessary for 
enterprises to streamline their processes so as to reduce 
costs and to improve performance. Moreover, it is clear 
that the economic success of an organisation is highly 
dependent on its ability to react to changes in its 
operating environment. To this end, Process- Aware 
Information Systems (PAISs) are a desirable technology 
as these systems support the business operations of an 
enterprise based on models of both the organisation and 
its constituent processes. PAISs encompass a broad 
range of technologies ranging from systems which rigidly 
enforce adherence to the underlying process model, e.g., 
workflow systems or tracking systems, to systems which 
are guided by an implied process model but do nothing 
to ensure that it is actually enforced, e.g., groupware 
systems[3]. Typically, these systems utilise an idealised 
model of a process which may be overly simplistic or 
even undesirable from an operational standpoint. 
Further-more the models on which they are based tend 
to be rigid in format and are not able to easily encompass 
either foreseen or unforeseen changes in the context or 
environment in which they operate. Up to now, there 
have not been any broadly adopted proposals or 
standards offering guidance for developing flexible 
process models able to deal with these sorts of changes. 
Instead most standards focus on a particular notation 

(e.g., XPDL, BPEL, BPMN, etc.) and these notations 
typically abstract from flexibility issues. Process 
flexibility can be seen as the ability to deal with both 
foreseen and unforeseen changes, by varying or adapting 
those parts of the business process that are affected by 
them, whilst retaining the essential format of those parts 
that are not impacted by the variations. Or, in other 
words, flexibility is as much about what should stay the 
same in a process as what should be allowed to change 
[5],[6]. Different kinds of flexibility are needed during 
the BPM life cycle of a process. Based on an extensive 
survey of literature and flexibility support offered by 
existing tools1, a range of approaches to achieve process 
flexibility have been identified. These approaches have 
been described in the form of a taxonomy which 
provides a comprehensive catalogue of process flexibility 
approaches for the control-flow perspective 
 
2.  PROBLEM ANALYSIS 
Recently, many efforts have been under taken to make 
PAISs more flexible and several approaches for adaptive 
process management, like ADEPT, have emerged in this 
context. The basic idea behind the se approaches is to 
enable users to dynamically evolve or adapt process 
schemes  such that they fit to changed  real world 
situations. More precisely, adaptive PMSs support 
dynamic changes of different process aspects(e.g.,control 
and dataflow)at different levels(e.g.,process instance and 
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process type level).In particular, ad-hoc changes 
conducted at the instance level(e.g.,to add, delete or move 
process steps during runtime)allow to adapt single 
process instances to exceptional or changing situations. 
Usually, such ad-hoc deviations are recorded in change logs 
,which results in more meaningful login formation when 
compared to traditional PAISs. 
Adaptive process management technology has not 
addressed the fundamental question what we can learn 
from the additional change log information (e.g., how to 
derive potential process schema optimizations from a 
collection of individually adapted process instances.  In 
principle, process mining techniques offer promising 
perspectives for this. However, current mining 
algorithms have not been de-signed with adaptive 
processes in mind, 
 
3. PROPOSED SYSTEM 
We have focused on the analysis of pure execution logs 
instead (i.e., taking obviously, mining adhoc changes in 
adaptive PMSs offers promising perspectives as well. By 
enhancing adaptive processes with advanced mining 
techniques we aim at a PMS framework, which enables 
full process life cycle support. However, the practical 
implementation of such a framework in a coherent 
architecture, let alone the integration of process mining 
and adaptive processes is far from trivial.  
In particular, we have to deal with the following three 
challenges.  
1. First, we have to determine which runtime 
information about adhoc deviations has to be logged and 
how this information should be represented to achieve 
optimal mining results. 
2. Second, we have to develop advanced mining 
techniques that utilize change logs in addition to 
execution logs. 
 3. Third, we have to integrate the new mining 
techniques with existing adaptive process management 
technology.  
This requires the provision of integrated tool support 
allowing us to evaluate our framework and to compare 
different mining variants. 
 

4. CONTRIBUTION: 
In our previous work, with ADEPT and ProM we have 
developed two separate frameworks for adaptive 
processes and for process mining respectively. While 
ADEPT has focused on the support of dynamic process 
changes at different levels, ProM has offered a variety of 
process mining techniques, e.g., for discovering a Petri 
Net model or an Event Process Chain (EPC) describing 
the behaviour observed in an execution log. So far, no 
specific ProM extension has been developed to mine for 
process changes. 
This paper contributes new techniques for mining adhoc 

process changes in adaptive PMSs and discusses the 
challenges arising in this context. We first describe what 
constitutes a process change, how respective 
information can be represented in change logs, and how 
these change logs have to be mined to deliver insights 
into the scope and context of changes. This enables us, 
for example, to better understand how users deviate 
from predefined processes. We import ADEPT change 
logs in ProM, and introduce mining techniques for 
discovering change knowledge from   these logs. As 
result, we obtain an abstract change process represented 
as a Petri Net model. This abstract process reflects all 
changes applied to the instances of a particular process 
type. More precisely, a change process comprises change 
operations (as Meta process steps) and the causal 
relations between them. We introduce two different 
mining approaches based on different assumptions and 
techniques.  
BACKGROUND INFORMATION 
This paper is based on the integration of two existing 
technologies: process mining and adaptive process 
management. This section gives background information 
needed to understand the implications and leverages of 
their combination 
4.1 Process Mining 
Although the focus of this paper is on analyzing change 
processes in the context of adaptive process 
management systems, process mining is applicable to a 
much wider range of information systems. There are 
different kinds of Process-Aware Information Systems 
(PAISs) that produce event logs recording events. 
Examples are classical work-flow management systems 
(e.g. Stafware), ERP systems (e.g. SAP), case handling 
systems, PDM systems, CRM systems (e.g. Microsoft 
Dynamics CRM), middleware (e.g. IBM’s Web Sphere), 
hospital information systems, etc. These systems all 
provide very detailed information about the activities 
that have been executed. The goal of process mining is to 
extract information (e.g., process models, or schemas) 
from these logs. 
Process mining addresses the problem that most “pro-
cess owners” have very limited information about what 
is actually happening in their organization. In practice 
there is often a significant gap between what is 
predefined or supposed to happen, and what actually 
happens. Only a concise assessment of the organizational 
reality, which process mining strives to deliver, can help 
in verifying pro-cess schemas, and ultimately be used in 
a process redesign effort. 
As indicated, process mining starts with the existence of 
event logs. The events recorded in such a logs should be 
ordered (e.g., based on timestamps) and each event 
should refer to a particular case (i.e., a process instance) 
and a particular activity. This is the minimal information 
needed. However, in most event logs more information is 
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present, e.g., the performer or originator of the event 
(i.e., the person / resource executing or initiating the 
activity), the timestamp of the event, or data elements 
recorded with the event (e.g., the size of an order). In this 
paper, we assume that event logs are stored in the MXML 
format. MXML is an XML-based format for representing 
and storing event log data, which is sup-ported by 
process mining tools such as ProM. Using our ProM 
import tool, it is easy to convert data originating from a 
wide variety of systems to MXML  
 

 
Fig : Overview showing three types of process mining: 
(1) Discovery, (2) Conformance, and (3) Extension. 
The idea of process mining is to discover, monitor and 
improve real processes (i.e., not assumed processes) by 
extracting knowledge from event logs (e.g., in MXML for-
mat). Clearly process mining is relevant in a setting 
where much flexibility is allowed and/or needed and 
therefore this is an important topic in this paper. The 
more ways in which people and organizations can 
deviate, the more variability and the more interesting it 
is to observe and analyse processes as they are executed. 
We consider three basic types of process mining [5]. 
• Discovery: There is no a-priori process schema, i.e., 
based on an event log some schema is constructed. For 
example, using the alpha algorithm a process schema can 
be discovered based on low-level events [5]. 
• Conformance: There is a-priori process schema. This 
schema is used to check if reality conforms to the 
schema. For example, there may be a process schema 
indicating that purchase orders of more than one million 
Euro require two checks. Another example is the 
checking of the four eyes principle. Conformance 
checking may be used to detect deviations, to locate and 
explain these deviations, and to measure the severity of 
these deviations 
• Extension: There is an    a priori process schema. This 
schema is extended with a new aspect or perspective, i.e., 
the goal is not to check conformance but to en-rich the 
schema. An example is the extension of a pro-cess 
schema with performance data, i.e., some a-priori 
process schema is used to project the bottlenecks on. 

Another example is the detection of data dependencies 
that affect the routing of a case and adding this 
information to the model in the form of decision rules  
At this point in time there are mature tools such as the 
ProM framework, featuring an extensive set of analysis 
techniques which can be applied to real process 
enactments while covering the whole spectrum depicted 
in Figure 1. Any of the analysis techniques of ProM can 
be applied to change logs (i.e., event logs in the context of 
adaptive process management systems. Moreover, this 
paper also presents two new process mining techniques 
exploiting the particularities of change logs [5]. 
4.2. Adaptive Process Management 
In recent years several approaches for realizing adaptive 
processes have been proposed and powerful proof-of-
concept prototypes have emerged. Adaptive PMSs like 
ADEPT, for example, provide comprehensive runtime 
information about process changes not explicitly 
captured in current execution logs. Basically, process 
changescantake place at the type as well as the instance 
level: Changes of single process instances may have to be 
carried out in an ad-hoc manner to deal with an 
unforeseen or exceptional situation. Process type 
changes, in turn, refer to the change of a process schema 
at the type level in order to adapt the PAIS to evolving 
business processes. Especially for long-running 
processes, such type changes often require the migration 
of a collection of running process instances to the new 
process schema. 
PMS frameworks like ADEPT support both ad-hoc 
changes of single process instances and the propagation 
of process type changes to running instances. Examples 
of ad-hoc changes are the insertion, deletion, movement, 
or replacement of activities. In ADEPT, such ad-hoc 
changes do not lead to an unstable system behaviour, i.e., 
none of the guarantees achieved by formal checks at 
build-time are violated due to the dynamic change. 
ADEPT offers a complete set of operations for defining 
instance changes at a high semantic level and ensures 
correctness by introducing pre-/post-conditions for 
these operations. Finally, all complexity associated with 
the adaptation of instance states, the remapping of 
activity parameters, or the problem of missing data is 
hidden from users. To deal with business process 
changes ADEPT also enables schema adaptations at the 
process type level. In particular, it is possible to 
efficiently and correctly propagate type changes to 
running instances. 
 
4.3 A FRAMEWORK FOR INTEGRATION 
Both process mining and adaptive processes address 
fundamental issues prevalent in the current practice of 
BPM implementations. These problems stem from the 
fact that the design, enactment, and analysis of a 
business processare commonly interpreted, and 



          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

               Volume: 02 Issue: 06 | Sep-2015           www.irjet.net                                                      p-ISSN: 2395-0072 

 

© 2015, IRJET                                    ISO 9001:2008 Certified Journal                                                                    Page 963 
 

implemented, as detached phases. 
Although both techniques are valuable on their own, we 
argue that their full potential can only be harnessed by 
tight integration. While process mining can deliver 
reliable information about how process schemas need to 
be changed, adaptive PMSs provide the tools to safely 
and conveniently implement these changes. Thus, we 
propose the development of process mining techniques, 
integrated into adaptive PMSs as a feedback cycle. On the 
other side, adaptive PMSs need to be equipped with 
functionality to exploit this feedback information. 
The framework depicted in Figure 2 illustrates how such 
an integration could be realized. Adaptive PMSs, 
visualized in the upper part of this model, operate on 
pre-defined process schemas. The evolution of these 
schemas over time spawns a set of process changes, i.e., 
results in multiple process variants. Like in every PAIS, 
enactment logs are created, which record the sequence 
of activities executed for each case. On top of that, 
adaptive PMSs can additionally log the sequence of 
change operations imposed on a process schema for 
every executed case, producing a set of change logs. 
Process mining techniques that integrate into such 
system in form of a feedback cycle may be positioned in 
one of three major categories: 
• Change analysis: Process mining techniques from this 
category make use of change log information, be-sides 
the original process schemas and their variants. One goal 
is to determine common and popular variants for each 
process schema, which may be promoted to replace the 
original schema. Possible ways to pursue this go alare 
through statistical analysis of changes or their 
abstraction to higher-level schemas. From the initially 
used process schema and a sequence of changes, it is 
possible to trace the evolution of a pro-cess schema for 
each case. Based on this information, change analysis 
techniques can derive abstract and aggregate 
representations of changes in a system. These are 
valuable input for analysis and monitoring, and they can 
serve as starting point for more involved analysis (e.g., 
determining the circumstances in which particular 
classes of change occur, and thus reasoning about the 
driving forces for change). 
• Integrated analysis: This analysis uses both change and 
enactment logs in a combined fashion. Possible 
applications in this category could perform a context-
aware categorization of changes as follows. Change 
process instances, as found in the change logs, are first 
clustered into coherent groups, e.g. based on the 
similarity of changes performed, or their environment. 
Subsequently, change analysis techniques may be used to 
derive aggregate representations of each cluster. Each 
choice in an aggregate change representation can then be 
analysed by comparing it with the state of each clustered 
case, i.e. the values of case data objects at the time of 

change, as known from the original pro-cess schema and 
the enactment logs. A decision-tree 

 
 
Fig: Integration of Process Mining and Adaptive Process 
Management 
 
Analysis of these change clusters provides an excellent 
basis for guiding users in future process adaptations, 
based on the peculiarities of their specific case. 
• Enactment analysis: Based solely on the inspection of 
enactment logs, techniques in this category can pinpoint 
parts of a process schema which need to be changed, e.g. 
paths having become obsolete. Traditional process 
mining techniques like control flow mining and 
conformance checking can be adapted with relative ease 
to provide valuable information in this context. For 
example, conformance checking, i.e. determining the “fit” 
of the originally defined process schema and the 
recorded enactment log, can show when a specific 
alternative of a process schema has never been executed. 
Consequently, the original pro-cess schema may be 
simplified by removing that part. Statistical analysis of 
processenactment can also high-light process definitions, 
or variants thereof, which have been rarely used in 
practice. These often clutter the user interface, by 
providing too many options, and they can become a 
maintenance burden overtime. Removing (or hiding) 
them after a human review can significantly improve the 
efficiency of a process management system. 
 

5.CHANGE MINING 
In this section we describe novel approaches for 
analyzing change log information, as found in adaptive 
PMSs. First, we describe how change logs can be mapped 
onto the MXML format used for process mining. This 
makes it possible to evaluate the application of 
traditional process mining algorithms to change logs. 
Subsequently, we explore the nature of change logsin 
more detail. This is followed by an introduction to the 
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concept of commutativity 
 
5.1. Mapping Change Logs to MXML 
Change log information can be structured on a number of 
different levels. Most of all, change events can be 
grouped by the process definition they address. As we 
are focusing on changes applied to cases, i.e. executed 
instances of a process definition, the change events 
referring to one pro-cess can be further subdivided with 
respect to the specific case in which they were applied 
(i.e. into change process instances). Finally, groups of 
change events on a case level are naturally sorted by the 
order of their occurrence. 
The described structure of change logs fits well into the 
common organization of enactment logs, with instance 
traces then corresponding to consecutive changes of a 
pro-cess schema, in contrast to its execution. Thus, 
change logs can be mapped to the MXML format with 
minor modifications. Listing 1 shows an MXML audit trail 
entry de-scribing the insertion of a task “Lab Test” into a 
process schema, 
 
<AuditTrailEntry><Data> 
<Attribute name="CHANGE.postset">Deliver_report 
</Attribute> 
<Attribute name="CHANGE.type">INSERT </Attribute> 
<Attribute name="CHANGE.subject">Lab_test 
</Attribute> 
<Attribute name="CHANGE.rationale">Ensure that blood 
values are within specs. 
</Attribute> 

<Attribute name="CHANGE.preset">Examine patient 
</Attribute> 
</Data><WorkflowModelElement>INSERT.Lab_test 
</WorkflowModelElement><EventType>complete 
</Event Type><Originator>N.E.Body </Originator> 
</AuditTrailEntry> 
Listing 1: Example of a change event in MXML. 
As discussed in the previous subsection, mapping 

process change logs to the existing MXML format for 

execution logs enables the use of existing mining 

algorithms (e.g., as implemented within the Prom 

framework) for mining change logs as well. In the 

following we discuss how “well” these algorithms 

perform when being applied to change logs. The 

underlying evaluation has been carried out using an 

extension of the ADEPT demonstrator. For evaluation 

purposes, the change processes generated by the 

different mining algorithms are compared along selected 

quality criteria. The most important criterion is how 

“well” a change process reflects the actual dependencies 

between the operations contained within the input 

change log. As for process instance I2, for example, 

change operation op4 depends on previous change 

operation op3. This dependency should be reflected as a 

sequence op3 −→ op4 within the resulting change 

process

5.2 Evaluation of Existing Mining Techniques 
As discussed in the previous subsection, mapping 

process change logs to the existing MXML format for 

execution logs enables the use of existing mining 

algorithms (e.g., as implemented within the ProM 

framework) for mining change logs as well. In the 

following we discuss how “well” these algorithms 

perform when being applied to change logs. The 

underlying evaluation has been carried out using an 

extension of the ADEPT demonstrator. For evaluation 

purposes, the change processes generated by the 

different mining algorithms are compared along selected 

quality criteria. The most important criterion is 

how”well” a change process reflects the actual 

dependencies between the operations contained within 

the input change log. As for process instance I2, for 

example, change operation op4 depends on previous 

change operation op3 (cf. Figure 4). This dependency 

should be reflected as a sequence op3 −→ op4 within the 

resulting change processing our evaluation we analyzed 

the α Algorithm, the Multi-Phase Miner, and the 

Heuristics Miner. All of these algorithms reflect the 

actual dependencies 

Between the change operations quite “well” for simple 

processes and a restricted set of change operations. The 

quality of the mined change processes decreases rapidly 

(i.e., dependencies are generated by the mining 

algorithms which are actually not existing and the 

change processes become less and less meaningful) if 

different change operations are applied and the 

underlying processes become more complex. The 

fundamental problem is that process changes tend to be 

rather infrequent, i.e., compared to regular logs there are 

relatively few cases to learn from. Therefore, the 

completeness of change logs, i.e. their property to record 

independent (i.e. parallel) activities in any possible 

order, cannot be taken for granted due to their limited 

availability. This has been simulated by using an 
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incomplete subset of change logs, as can be expected in a 

real-life situation. Our experiments with applying 

existing process mining algorithms to change logs have 

shown that their suitability in this context is limited. In 

the following section, we explore the nature of change in 

an adaptive system and the associated logs in more 

detail to find a more suitable means for detecting 

whether an observed ordering relation is actually 

necessary. 

 

5.3 Motivation: Characterization of Change Logs 

Change logs, in contrast to regular enactment logs, do not 

describe the execution of a defined process. This is 

obvious from the fact that, if the set of potential changes 

would have been known in advance, then these changes 

could have already been incorporated in the process 

schema (making dynamic change obsolete). Thus, change 

logs must be interpreted as emerging sequences of 

activities which aretaken from a set of change 

operations. In Section 5.1 it has been defined that each 

change operation refers to the original process schema 

through three associations, namely the subject, pre-set, 

and post-set of the change. As all these three associations 

can theoretically be bound to any subset from the 

original process schema’s set of activities1, the set of 

possible change operations grows exponentially with the 

number of activities in the original process schema. This 

situation is fairly different from mining a regular process 

schema, where the number of activities is usually rather 

limited (e.g., up to 50–100 activities). Hence, the mining 

of change processes poses an interesting challenge. 

Summarizing the above characteristics, we can describe 

the meta-process of changing a process schema as a 

highly unstructured process, potentially involving a large 

number of distinct activities. These properties, when 

faced by a process mining algorithm, typically lead to 

overly precise and confusing “spaghetti-like” models. In 

order to come to a more compact representation of 

change processes, it is helpful to abstract from a certain 

subset of ordering relations between change operations. 

When performing process mining on enactment logs (i.e., 

the classical application domain of process mining), the 

state of the mined process is treated like a “black box”. 

This is necessary because enactment logs only indicate 

transitions in the process, i.e. the execution of activities. 

However, the information contained in change logs 

allows to trace the state of the change process, which is 

in fact defined by the process schema that is subject to 

change. Moreover, one can compare the effects of 

different (sequences of) change operations. From that, it 

becomes possible to explicitly detect whether two 

consecutive change operations can also be executed in 

the reverse order without changing the resulting state. 

The next section introduces the concept of 

commutativity between change operations, which is used 

to reduce the number of ordering relations by taking into 

account the semantic implications of change events. 

 

5.4Commutative and Dependent Change 

Operations 

 

When traditional process mining algorithms are applied 

to change logs, they often return much unstructured, 

“spaghetti-like” models of the change process. This 

problem is due to a large number of ordering relations 

which do not reflect actual dependencies between 

change operations. The concept of commutativity is an 

effective tool for determining, whether there indeed 

exists a causal relation between two consecutive change 

operations. As discussed in can be characterized as 

transforming one process schema into another one. 

Thus, in order to compare sequences of change 

operations, and toderive ordering relations between 

these changes, it is helpful to define an equivalence 

relation for process schemas. 

 

5.5 Approach 1: Enhancing Multi-phase Mining 

with Commutativity 

Mining change processes is to a large degree identical to 

mining regular processes from enactment logs. 

Therefore, we have chosen not to develop an entirely 

new algorithm, but rather to base our first approach on 

an existing process mining technique. Among the 

available algorithms, the multi-phase algorithm has been 

selected, which is very robust in handling ambiguous 

branching situations (i.e., it can employ the “OR” 

semantics to split and join nodes, in cases where neither 

“AND” nor “XOR” are suitable). Although we illustrate 

our approach using a particular algorithm, it is important 

to note that any process mining algorithm based on 

explicitly detecting causalities can be extended in this 

way (e.g., also the different variants of the α-algorithm). 

The multi-phase mining algorithm is able to construct 

basic workflow graphs, Petri nets, and EPC models from 

the causality relations derived from the log. For an in-

depth description of this algorithm, the reader is 

referred. The basic idea of the multiphase mining 

algorithm is to discover the process schema in two steps. 
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First a model is generated for each individual process 

instance. Since there are no choices in a single instance, 

the model only needs to capture causal dependencies. 

Using causality relations derived from observed 

execution orders and the commutativity of specific 

change operations, it is relatively easy to construct such 

instance models. In the second step these instance 

models are aggregated to obtain an overall model for the 

entire set of change logs. The causal relations for the 

multi-phase algorithm are derived from the change log 

as follows. If a change operation A is followed by another 

change B in at least one process instance, and no 

instance contains B followed by A, the algorithm assumes 

a possible causal relation from A to B. In the example log 

introduced in instance a change operation deleting 

“Inform Patient” followed by another change, inserting 

the same activity again. As no other instance contains 

these changes in reverse order, a causal relation is 

established between them.  a Petri net model of the 

change process mined from the example change log 

instances in The detected causal relation between 

deleting and inserting “Inform patient” is shown as a 

directed link between these activities. Note that in order 

to give the change process explicit start and end points, 

respective artificial activities have been added. Although 

the model contains only seven activities, up to three of 

them can be executed concurrently. Note further that the 

process is very flexible, i.e. all activities can potentially 

beskipped. From the very small data basis given in where 

change log instances hardly have common sub 

sequences, this model delivers a high degree of 

abstraction. When two change operations are found to 

appear in both orders in the log, it is assumed that they 

can be executed in any order. An example for this is 

inserting “x-ray” and inserting “Lab Test”, which appear 

in this order in instance I8, and in reverse order in 

instance I9. As a result, there is no causal relation, and 

thus no direct link between these change operations in 

the model shown i Apart from observed concurrency, as 

described above, we can introduce the concept of 

commutativity-induced concurrency, using the notion of 

commutativity introduced in the previous subsection 

From the set of observed causal relations, we can exclude 

causal relations between change operations that are 

commutative. For example, instance I2 features deleting 

activity “xRay” directly followed by deleting “Inform 

Patient”. As no other process instance contains these 

change operations in reverse order, a regular process 

mining algorithm would establish a causal relation 

between them. However, it is obvious that it makes no 

difference in which order two activities are removed 

from a process schema. As the resulting process schemas 

are identical, these two changes are commutative. Thus, 

we can safely discard a causal relation between deleting 

“xRay” and deleting “Inform Patient”, which is why there 

is no link in the resulting change process shown in 

Commutativity-induced concurrency removes 

unnecessary causal relations, i.e. those causal relations 

that do not reflect actual dependencies between change 

operations. Extending the multi-phase mining algorithm 

with this concept significantly improves the clarity and 

quality of the mined change process. If it were not for 

commutativityinduced concurrency, every two change 

operations would need to be observed in both orders to 

find them concurrent. This is especially significant in the 

context of change logs, since one can expect changes to a 

process schema to happen far less frequently than the 

actual execution of the schema, resulting in less log data. 

 

5.6 Approach 2: Mining Change Processes with 

Regions 

The second approach towards mining change logs uses 

an approach based on the theory of regions  and exploits 

the fact that a sequence of changes defines a state, i.e., 

the application of a sequence of changes to some initial 

process schema results in another process schema. The 

observation that a sequence of changes uniquely defines 

a state and the assumption that changes are “memory 

less” (i.e., the process schema resulting after the change 

is assumed to capture all relevant information) are used 

to build a transition system. Using the theory or regions, 

this transition system can be mapped onto a process 

model (e.g., a Petri net) describing the change process. In 

Definition 2 we already used the concept of a transition 

system to describe the behavioural aspect of a process 

schema. However, now we use it as an intermediate 

format for representing change processes. As indicated 

in we do not advocate transition systems as an end-user 

language. Any modelling language having formal 

semantics can be mapped onto a transition system. The 

reverse is less obvious, but quite essential for our 

approach. Therefore, we first explain the “theory of 

regions” which allows us to translate a transition system 

into a graphical process model. 
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Fig1: Mined Example Process (Petri net notation) 

5.7 Comparing Both Approaches 

We have introduced two new process mining approaches 
based on the characteristics of change logs. The first 
approach is based on the multi-phase algorithm 
However, the original algorithm has been enhanced to 
exploit information about commutativity of change 
operations. If there are independent changes (i.e., 
changes that operate on different parts of the schema), it 
is not necessary to see all permutations to conclude that 
they are in parallel. The second approach is based on the 
observation that given an original schema and a 
sequence of change operations, it is possible to 
reconstruct the resulting process schema. This can be 
used to derive a transition system where the states are 
represented by possible (intermediate) process schemas. 
Using regions such a transition model can be translated 
into an equivalent Petri net describing the change 
process. In this section, we applied the two approaches 
to an example log. This allows us to compare both. The 
Petri net in Figure 2 is very different from the one in 
Figure 1. This illustrates that both approaches produce 
different results, i.e., they provide two fundamentally 
different ways of looking at change processes. It seems 
that in this particular example, the first approach 
performs better than the second. This seems to be a 
direct consequence of the small amount of change log 
instances (just nine) in comparison with the possible 
number of change operations. When there is an 
abundance of change log instances, the second approach 
performs better because it more precisely captures the 
observed sequences of changes. Moreover, the second 
step could be enhanced by generalization operations at 
the transition system level, e.g., using commutativity. 
 

5.8 Towards Learning about the Context of 

Change 
Understanding how process change information can be 

represented in logs and how these logs can be mined to 

deliver valuable insights into the scope of change 

delivers insights of how processes deviate from 

predefined routines. This is a significant move towards 

understanding why such changes occur, viz., the drivers 

for change). These drivers can be found in the context of 

a process. In general terms, the context of a business 

process is made up by all the relevant information that is 

available at some stage during the execution of a 

business process, and that could potentially have 

influenced decisions in this process. It can be seen as the 

set of process data and information that is relevant to the 

process execution but typically not defined in the 

process definition itself, which, following existing 

classification schemes would at least include the control 

flow logic, involved informational data, and 

organizational resources. Context information can be 

retrieved from a wide range of potential data sources. 

Enactment logs, for instance, often include information 

about time and value of a data modprocess could be 

investigated together with the reasons for the change 

decisions taken along the execution of a process. This can 

be achieved by looking at change process models and the 

decision points contained within. However, while these 

change process models themselves are already helpful in 

developing an understanding of the drivers for change, 

they cannot be used to actually learn from the change. 

Learning can be interpreting as deriving information 

from an adaptive PMS. The fundamental premise is that 

cases in which a certain change has been applied will 

exhibit distinct patterns in their context information. As 

the set of potential context information can be very large, 

identifying the pivotal data elements, or patterns thereof, 

which are unique for a specific change, somehow 

resembles looking for a needle in a haystack. 

Fortunately, existing Machine Learning (ML) techniques 

can solve this problem. Classification algorithms, for 

instance, take for input a classified set of examples, the 

so-called training set. Once this set has been analyzed, 

the algorithm is capable of classifying previously 

unknown examples. Training a decision tree algorithm 

with such a classified set may then provide decision trees 

that visualize how decisions about process change were 

being made. Other classification algorithms from ML can 

generate a set of classification rules.These classification 

algorithms by definition focus on specific decisions, i.e., 

one branching point in the process, and are thus 

dependent on the mining of a change process model in 

the first place.An alternative to this approach is the 

mining of association rules. Here, every case is regarded 
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as a set of facts, where a fact can both be the occurrence 

of a change operation as well as a context attribute 

having a specific value. After identifying frequent item 

sets, the algorithm can derive association rules. These 

rules describe, for instance, that for a large fraction of 

cases where an additional x-ray was inserted, the patient 

was older than 65 years and the doctor was female, an 

additional blood screening was inserted.  

 

 
Figure2: Transition system based on the change log 

shown 

 
Fig 3: Screenshot of ProM showing the Petri net obtained 

for the change log depicted 

Association rules are derived in a global manner, viz., the 
order in which change operations occur is not taken into 
account. This can be beneficial especially when there are 
hardly any causal relations between change operations. 
Association rules may discover tacit relationships 
between change operations and context data that could 
not be captured by classification. In summation, the 
application of ML techniques appears promising for the 
identification of the drivers for change from the context 
of a process, and for relating them to one another. We 
believe that this structured approach can deliver precise 
results while still remaining feasible in practical settings, 
and can thus a be foundation for the future design of self-
adapting PMSs. 

 

6. RELATED WORK 

Although process mining techniques have been 
intensively studied in recent years Agrawal no 
systematic research on analyzing process change logs 
has been conducted so far. Existing approaches mainly 
deal with the discovery of process schemas from 
execution logs, conformance testing, and log-based 
verification. The theory of regionshas also been exploited 
to mine process schemas from execution logs, e.g. from 
logs describing software development processes. 
However, execution logs in traditional PMSs only reflect 
what has been modeled before, but do not capture 
information about process changes. While earlier work 
on process mining has mainly focused on issues related 
to control flow mining, recent work additionally uses 
event-based data for mining model perspectives other 
than control flow (e.g., social networks, actor 
assignments, and decision mining. In recent years, 
several approaches for adaptive process management 
have emerged, most of them supporting changes of 
certain process aspects and changes at different levels. 
Examples of adaptive PMSs include. Though these PMSs 
provide more meaningful process logs when compared 
to traditional workflow systems, so far, only little work 
has been done on fundamental 
questionslike.
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Fig:Change Mining Plug-in within ProM 

 
We can learn from this additional log information, how 
we can utilize change logs, and how we can derive 
optimized process schemas from them. 
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8. CONCLUSION&FUTURE WORK: 

Thispapergave anoverview ofhowcomprehensive support
fortrueprocessflexibilitycanbeprovidedbycombiningadap
tivePMSswithadvancedprocessminingtechniques. 
TheintegrationofprocessminingwithadaptivePMSenables
theexploitationofknowledge about process changes 
from change logs. We have developed two mining 
techniques and implemented them as plug-ins for 
the ProM framework, taking ADEPT change logs in 
the mapped MXML format as in-put. Based on this 
we have sketched how to discover a (minimal) 
change process which captures all modifications 
applied to a particular process. This discovery is 
based on the analysis of (temporal) dependencies 
between change operations that have been applied 
to a process instance. Meaningful, compact 
representations of the change process. 
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