
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 713

Android Anti-malware Against Transformation Attacks

Ajinath N. Pawar1, Saiprasad K. Malekar2, Rupali A. Holkar3, Poonam S. Ahire4,

Prof. Kavita R. Wagh5

1234UG Student, Computer Engg. Department, B.V.C.O.E & R.I, Maharashtra, India
5Lecturer, Computer Engg. Department, B.V.C.O.E & R.I, Maharashtra, India

---***---
Abstract - Android is presently the most

popular and useful operating system for mobile. Attack

of malware threats have recently became a real

problem in smartphone.In this paper, we have stated a

simple and high efficient technique for detecting

malware Android applications on Play store which need

to be installed. In addition, a majority of them can be

find by applying risk score over known malware with

less effort.If the applications is having some malicious

intention; it might be possible that most of these

applications come from an unknown developer and so

there is higher possibility of them being malicious. To

overcome these two problems, we have to developed a

system in which we may consider different sources to

collect the information about the applications like

information from the labels (application name), from

search engine, contextual usage history of the

application collected from the users usage record and

the permissions of the applications, which they have

request at the time of installation giving us a secure

and effective classification of the applications. We have

compared our results with the exiting categories of the

applications given on a play store; it provides

appropriate results with defined categories.

Key Words: Risk, Malware, Mobile, Android, Anti-
Malware, Security, Mobile Apps.

1. INTRODUCTION
Mobile devices such as smartphones, tablets and palmtop
computers are becoming more popular.Unfortunately, this
popularity attracts malicious attacks too.Currently, mobile
malware has already become a serious concern.It has seen
that in Android, one of the most popular smartphone
platforms, malware has constantly been on the
increase.With the rise of malware attacks, the platform has
seen an evolution of anti-malware tools, with a range of
free and paid service that is now available in the official
Android mobile app. Market called Google Play Store.

In this paper, we aim to evaluate the capacity of anti-
malware tools on Android on various evasion
techniques.For eg., polymorphism is a technique used to
avoid detection tools by changing a malware in different
forms but with the exact code.Also there is another
technique called metamorphism which can change the
code when it no longer remains the same but still has the
same action.For making simple presentation in this paper,
we use the word ‘polymorphism’ to express both
obfuscation techniques.Additionally, we have use the term
‘transformation’ deeply for reference of various
polymorphic or metamorphic changes. Our domain of
study is different from that we exclusively focus on mobile
devices like smartphones, tablets that require various
ways for anti-malware design.Malware attacks on mobile
devices have recently increased in extent their evolution
but the capabilities of existing anti-malware tools are
difficult to understand.
To evaluate existing anti-malware software, they have
developed number of systematic framework such as Droid
Chameleon [1] with different transformation techniques
that may be used in a system which can change Android
applications automatically. Some of these changes are
highly specific for the Android platform.Based on the
framework, we pass known malware samples (from
different families) through these changes we generate new
variants of malware, which verifies to possess the’ original
malicious functionality. We use these variants to evaluate
the effective popular anti-malware tools.
Polymorphic attacks have long been a problem for
traditional desktop-server systems. Previous studies on
the effectiveness of anti-malware tools on PC's [5], our
domain of study is different in that we have exclusively
focus on mobile devices like smartphones, tablets and
palmtop computers which require different ways for anti-
malware design. Also, malware on mobile devices have
recently escalated their evolution but the capability of
existing anti-malware tools are not yet understood.In the
meantime, simple forms of polymorphic attacks already
takes place in the wild [6].
 We regularly and systematically evaluate anti-malware
products for android regarding its resistance against
various transformation techniques in known malware
space. So we developed Droid Chameleon, a regular and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 714

systematic framework with various transformation
techniques.
 We have implemented a prototype of Droid Chameleon
and used it to evaluate ten popular anti-malware products
for Android.Our findings show that all of them are
vulnerable to common evasion techniques.The signatures
studied do not require static analysis of byte code.
 We have been studying the evolution of anti-malware
tools over a period of two year.Our basic findings show
that some anti-malware tools try to strengthen their
signatures with a trend towards content-based signatures
while previously they escaped by certain transformations
not involving code-level changes.The improved signatures
still show to be vulnerable..
Based on our evaluation results, we explored possible
ways to improve current anti-malware solutions.To be
precise we highlighted out that android eases developing
modern detection techniques because much code is high-
level byte codes rather than native and primary codes.
Lastly, certain platform support can be enlisted to cope
with advanced transformations.

2. LITERATURE SURVEY

An automated and extended platform to stress test

Android anti-virus systems" was developed by M. Zheng,

P. Lee, and J. Lui in July 2012 known as ADAM.[2]. It was

an automated and extended system that evaluates the

usefulness of anti-virus using various malware for Android

platform. It automatically changes an Android malware

samples into different variants through various

repackaging and difficult techniques, while preserving the

original malicious behavior.

ADAM can automatically change an original malware

sample to different variants via repackaging and difficult

techniques in order to test the effectiveness of different

anti-virus systems against malware mutation [2]. ADAM is

designed by connecting different building blocks. These

blocks are tested using different anti-viruses against

malware samples

Advantages -It can be used for study of very large-scale

malware samples and changes is done manually so there is

no need to change manual modification of malwares.

ADAM is not capable to prevent an anti-malware tool. It

implements only some of changes, such as renaming

methods, introducing junk methods. ADAM will never

provide the best sensing mechanism which is also its main

limitation of this system.

“A taxonomy of obfuscating [3] transformations”, stated by

C. Collberg, C. Thomborson, and D. Low, Dept. Computer.

Sci., Univ. Auckland, Auckland, New Zealand, Tech. Rep.

148, 1997. It has been the focus of much interest due to its

relevance. This helps to preserve privacy policies between

sender and receiver. In this technique Executer does the

actual execution.

Advantages-Obfuscation can be easily used to trace

software pirates.

Limitations- The obfuscated software remains secret and

hidden until the powerful removal tool is to be built.

Therefore, there must be very little time lengths between

the releases of obfuscated software and its new versions.

Some tools like the Malware Detection by Semantics

technique which was invented by M. Christodorescu, S.

Jha, and C. Kruegel [4], in the year 2007,proposed that

malware detector can be used to find out the malicious

behavior of a program. Many times hackers use complex

techniques to change the malwares. So, here the detectors

use pattern-matching technique to search the complex

techniques made by hackers. The benefit of this system is

that it is fully syntax based technique. Therefore this

makes it easy to be understood by detectors and it has

relatively low run time overhead. Limitation is compulsory

to prevent and save the remnants of harmful instructions

into templates which needs large databases.

“Effective and efficient malware detection at the end user,”

was developed by C. Kolbitsch[5], P. Comparetti, C.

Kruegel, E. Kirda, X. Zhou, and X. Wang, in Proc. 18th Conf.

USENIX Security Symp in the year 2009. It proposed a new

malware detection approach that is effective and 100%

effective, therefore can be used to replace old anti-virus

tool at the end user. This method uses a malware to build a

model that characterizes its behavior. Such designs

describe the information motion between the system

which is essential to the malware's mission, and therefore,

cannot be easily avoided by simple obfuscation or

polymorphic methods. one must extract the program

slices which are responsible for such information flows.

For detection and identification, execute these to match

with these models against the run-time behavior of an

unknown software.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 715

Advantages- It can effectively sense whether it is running

malicious software or code on an end user's host with a

small overhead. It generates powerful tool that captures

detailed information how behavior of a malwares

variation occurs. Scanner can accurately match the activity

of an unknown software program against this system.

Disadvantages-It cannot generate system call signs or find

or detect a starting point for the process. The new

algorithms should be implemented for above limitation.

"Risk-Ranker:accurate 0-day android malware detection”

was proposed in year 2012 by M. Grace, Q. Zhang, S. Zou,

and X. Jiang[6]. It proposed proactive scheme to spot zero-

day Android malware, It does not stay on malware

samples and its signatures. It is an automated system

called Risk-Ranker which analyzes whether a particular

app exhibits harmful behavior (example launching a root

exploit or sending background Short messaging

system(SMS) messages). It analyses and converts potential

security risks into its similar sensing and detection

modules of two orders of complexity. The first-order

modules handle non-complex apps by analysing and

evaluating the risks ; the second-order modules capture

different and specific behaviors to search and analyse

specific malwares.

 Y. Nadiji, J. Giffn and P. Traynor proposed

"automatic remote repair of malware" in the year 2011.In

this the malicious network traffic increases because of

intruders. The diificulty can be analysed and solved by

using Air-mid, which is an automated system for remote

removal of mobile malware. After the sensing and

detection of malicious and harmful traffic.

Disadvantages-It does not stick and stay to device and its
security. It is not able to define the traffic of large amount
of malwares. “Apps-Play-ground: Automated Security
Analysis of Smartphone Applications”, was developed in
Feb 2013, by V.Rastogi, Chen and W.Enck, to do the
automation of security analysis the tool apps playground
is used. It incorporates multiple components comprising
different detection and automatic exploration techniques
for this purpose [8]. The system can be checked using
multiple large-small scale experiments involving real
cancerous application. The main advantage of this
technique is that it gives effective and correct analysis
even with huge number of applications, with disadvantage
of less correct and effective at automatically checking
privacy leaks.
“Hey, you, get off of my market: this was developed by Y.
Zhou, Z. Wang, W. Zhou and X. Jiang in the year 2012.

 To find out cancerous and malicious applications related
to android permission based characteristic foot printing is
used. It is used for known malwares. Then a filtering
scheme is applied to unknown and suspicious malwares.
the total system with different types of malicious and
cancerous families is called Droid-Ranger [9].
Benefits- It helps to concentrate on both official and
unofficial or unsupported Android markets for detecting
malicious applications and softwares .By using known and
unknown malicious applications the detection proves to
be scalable and efficient.
Limitation- It needs rigorous policies active process
especially for unofficial marketplaces which is not satisfied
by Droid Ranger yet.

3. EXISTING SYSTEM

In existing malware detection system like anti-virus

we first download any file or media then anti-virus scan

that files and detect the viruses or malwares.

 To evaluate existing anti-malware software, they

have developed number of systematic framework such as

Droid Chameleon[1] with different transformation

techniques that may be used in a system which can change

Android applications automatically. Some of these changes

are highly specific for the Android platform. Based on the

framework, which we pass known malware samples (from

different families) through these changes we generate new

variants of malware, which verifies to possess the’

original malicious functionality. We use these variants to

evaluate the effective popular anti-malware tools. Droid-

Dream [12] and BaseBridge [13] are malware with root

exploits packed into benign applications.DroidDream tries

to get out root privileges by using two different root

exploits, rage against the cage and exploid exploit.

BaseBridge includes only one exploit, rage against the

cage. If these exploits are successful, both DroidDream and

BaseBridge install payload applications. Geinimi [14] is a

trojan packed into benign applications. It communicates

with remote C&C servers and exfiltrates user information.

Fakeplayer [15], the first known malware on Android,

sends SMS messages to premium numbers, thus costing

money to the user. Bgserv [16] is a malware injected into

Google’s security tool to clean out DroidDream and

distributed in third party application markets. It opens a

backdoor on the device and exfiltrates user information.

Plankton [17] is a malware family that loads classes from

additional downloaded dex files to extend its capabilities

dynamically.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 716

4. PROPOSED SYSTEM

In proposed system we first find out the risk scores of app
which you want to download from google play store and
check whether the risk score of that particular app is high
or low, if we found the low risk score, then download the
app but if we found very high risk score then find out the
similar kind of app from google play store which having
low risk score.

Fig.1

Fig.2

5. ALGORITHMS/TECHNIQUES

 Algorithm for Android anti-malware against

transformation attack is given below:

Step 1: Start

Step 2: User give request for app.

Step 3: System search app details on Play store.

Step 4: System scans the signature and script record

for app which is requested by user.

Step 5: Finding the risk scores of app requested by

user.

Step 6: if risk score is higher than threshold then

 Search for next app.

Go to step 4

Step 7: Else result is low risk score then

download the app directly.

Step 8: Stop

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 717

Naïve Bayes Model:

It is a machine learning model which is similar to Max

Entropy model.In this model, it assumes that the

features of these model are conditionally independent

of each other. It is based on the Bayes theorem which

is being used in the final phase for calculating the risk

score of the application. It is also explained in

generalized form as [18]:

P (c| x) = (P(c|x) P(c)) ÷ P(x)

Where ,

P(c|x) is posterior probability of class (target) given

predictor (attribute).

P(c) is the prior probability of class.

P(x|c) is likelihood which is the probability of

predictor given class.

P(x) is the prior probability of predictor class.

5.1. Techniques

In our system we are also using the various

transformation techniques which are stated below:

A. Trivial Transformations.

 1) Repacking: Android packages that are recalled are

signed jar files. Files could be unzipped with the regular

zip utilities that are repacked again with the tools

available in the Android SDK. Once these packages are

repacked these applications are signed with custom keys.

2) Disassembling and Reassembling:The Dalvik bytecode

which gets compiled in classes.dex of the application

package could be disassembled and it will be reassembled

back again.The various items such as classes, methods,

strings, and so on in a dex file could be arranged or can be

expressed in more than one way and a compiled program

may be represented in various forms. Signatures which

match the whole classes.dex are formed by this

transformation.

3) Changing Package Name: Every application which is

unique to the application is established by package name.

This name is present in the package’s

AndroidManifest.The change can be made to the package

name for a given malicious application to another package

name.The package names of applications are unique

concepts for Android and quite similar transformations

that does not exist for other systems.

B. Transformation Attacks Detectable by Static Analysis

(DSA)

 DSA transformations having applications do not terminate

all types of static analysis.Specifically,forms of such

analysis which describe the semantics, such as data flows

are still possible.String matching or matching API having

simpler checks calls could be thwarted.

1) Identifier Renaming:

We can also rename most class, method, and field

identifiers in a byte code.We come across such several free

obfuscation tools like ProGuard [10] which provides

identifier renaming. In Listing 1, listing 2 presents an

example transformation for code.

2) Data Encoding:

All the strings and array data which has been used in the

code contains all the dex files. From these strings and

arrays,data encoding could be used to develop signatures

against malware. To formed such signatures we can keep

them in a encoded form. In Listing 1,listing 3 shows code

which are changed by string encoding.

3) Call Indirections:

Such changes can be seen in a easier way to maintain call

graph of the application to defeat automatic matching. For

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 718

a method call which is given, the call is converted to a call

to a previously non-existing method that then calls the

method in the original call. This can be done for all the

calls, that goes out into framework libraries as well as

those within the application code. This transformation

could be seen as trivial function outlining [11].

4) Code Reordering:

It reorders the instructions in the methods of a program.

This transformation is accomplished by reordering the

instructions and thus inserting go to instructions for

preserving the runtime execution sequence of the

instructions.

5) Junk Code Insertion:

These transformations have introduced code sequences

which are executed but does not affect the rest of the

program. Detection based on analysing instruction (or

opcode) sequences can be beaten by junk code insertion.

Junk code constitute simple nop sequences or many

sophisticated sequences and branches that actually have

no effect on the semantics.

6) Crypting Payloads and Native Exploits:

 In Android, native code is usually made available for

libraries that are accessed via JNI. However, some

malware such as DroidDream which packs native code

exploits that meant to run from a command line in non-

standard locations in the application package. All such files

are stored by encryption in the application package and

may be decrypted at runtime.Certain malware such as

DroidDream carries payload applications which are

installed once the system has been compromised[12].

These payloads may also be stored encrypted. We have

placed into payload and exploited encryption as DSA

because signature based static detection could still be

possible based on the main application’s byte code.

7) Other Simple Transformations:

There are few other transformations as well that are

specific to Android.Debugging information containing such

as source file names, local,parameter variable names and

source line numbers could be removed off. Moreover, non-

code files and resources contained in Android packages

can be renamed or modified.

8) Composite Transformations:

Any of the above transformations can be combined with

one another to generate stronger obfuscations.While

compositions are not independent of order, anti-malware

detection results should be not committed to the order of

application of transformations in all the cases.

C. Transformation Attacks Non-Detectable by Static

Analysis(NSA)

These transformations break all kinds of static

analysis.Some encoding or encryption is typically required

so that no static analysis scheme can all infer parts of the

code. Parts of the encryption keys may even be fetched

remotely. In this scenario, interpretation or emulation of

the code (i.e. dynamic analysis) could be still possible but

static analysis becomes incapable.

1) Reflection:

 The Java API reflection allows a program to invoke a

method using the name of the methods. We can convert

any method call into call to that method via reflection. This

makes it difficult to analyze statically which method is

being called.A consequent encrypted method name make

it impracticable for any static analysis to recover the call.

2) Byte code Encryption:

It tries to make the code not available for static

analysis.The applicable piece of the application code is

stored in encoding form and is decipher at runtime via a

decipherment routine. Code encoding has been used in

polymorphic viruses; the only code which is available to

signature based antivirus applications remains the

decipherment routine which is typically clarification in

different ways at each replication of the virus to avoid

detection.

6. EXPECTED RESULT

 In the work, we have actually focused on the evaluation of

anti-malware products for Android. In a specific manner,

we have attempted to deduce the kind of signatures that

these products used to detect malware and how resistant

that signatures are against transformation in the malware

binaries. In this paper, we have analysed that android

application which we need to install, firstly it check risk

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 719

score of malware attacks and then it takes the permission

to download the application. If selected applications

contain any type of malware or viruses attack then it does

not download the application when the risk score is high

instead it checks another application similar to it

containing no malware having the least risk score.

7. CONCLUSIONS

In this paper, we analysed different anti-malwares which

can be used for avoidance of different malware attacks.

ADAM tool, complex mechanisms are used for privacy

preserving but with fewer transformations malware

detectors that use complex techniques requires pattern

matching techniques. A framework based on

DroidChameleon[1] uses more changes which are more

accurate and efficient with anti-malware tools that can be

found.It is necessary to protect the mobile device from

malware.We stated a simple and high efficient technique

for protecting the android devices from malware and

finding the risk scores before downloading the apps from

play store. This anti-malware application is important for

not only measuring the risk scores of mobile malware

threats but also propose effective, next generation

solutions. We exercise DroidChameleon[1], a systematic

framework with various transformation techniques. We

have developed this application because in our research it

is found that the existing anti malware products are fail to

provide protection to common malware transformation

techniques. Our results on various popular merchantile

anti-malware applications for android are unreassuring

none of these tools is tolerant against common malware

transformation techniques. In addition, a majority of this

can be trivially discomfited by applying slight

transformation over known malware with little effort for

malware authors. Finally, our results have proposed

possible remedies for improving the current state of

malware detection on mobile devices.

ACKNOWLEDGEMENT

We wish to express our sincere gratitude to Prof. C. K.
Patil, Principal and Prof. H.D Sonawane, H.O.D of Computer
Department for providing me an opportunity for
presenting Paper on “Android Anti-malware Against
Transformation Attacks”. We sincerely thank to our paper
guide Prof. K. R. Wagh for her guidance and

encouragement for completing the paper work. We wished
to express our gratitude to the officials and especially our
staff members who render their help during the period of
our paper. Last but not least we wish to avail our self of
this opportunity, express a sense of gratitude and love to
our friends and our parents for their manual support,
strength, help and for everything.

REFERENCES

[1] V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon:

Evaluating Android anti-malware against transformation

attacks,” in Proc. ACMASIACCS, May 2013, pp. 329–334.

[2] M. Zheng, P. Lee, and J. Lui, “ADAM: An automatic and
extensible platform to stress test Android anti-virus systems,”
in Proc. DIMVA, Jul. 2012, pp. 1–20.

[3] .C. Collberg, C. Thomborson, and D. Low, “A taxonomy of
obfuscating transformations,” Dept. Comput. Sci., Univ.
Auckland, Auckland, New Zealand, Tech. Rep. 148, 1997.

[4] .M. Christodorescu, S. Jha, S. Seshia, D. Song, and R.
Bryant, “Semantics-aware malware detection,” in Proc. IEEE
Symp. Security Privacy, May 2005, pp. 32-46.

[5] C. Kolbitsch, P. Comparetti, C. Kruegel, E. Kirda, X. Zhou,
and X. Wang, “Effective and efficient malware detection at
the end host,” in Proc. 18th Conf. USENIX Security Symp.,
2009,pp. 351–366..

[6] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,
“RiskRanker: Scalable and accurate zero-day android
malware detection,” in Proc.10th Int. Conf. Mobile Syst.,
Appl., Services, 2012, pp. 281–294.

[7] Y. Nadji, J. Giffin, and P. Traynor, "Automated remote
repair for mobile malware," in Proc. 27th Annu. Comput.
Security Appl. Conf., 2011, pp. 413-422.

[8] V.Rastogi, Y.Chen, and W.Enck ,“AppsPlayground:
Automatic security analysis of smartphone applications,” in
Proc. ACM CODASPY, Feb. 2013, pp. 209–220.

[9] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off
of my market: Detecting malicious apps in official and
alternative Android markets,” in Proc. 19th Netw. Distrib.
Syst. Security Symp., 2012, pp. 1–13.

[10] (2013, Dec. 3).ProGuard [Online].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 720

[11]R. Komondoor and S. Horwitz, “Semantics-preserving

procedure extraction,” in Proc. 27th ACM SIGPLAN-SIGACT

Symp. POPL, 2000, pp. 155–169.

[12] Lookout, San Francisco, CA, USA. (2011). Update:

Security Alert: DroidDream Malware Found in Official

Android Market[Online].

[13] (2013, Dec. 3). Android.Basebridge—Symantec [Online].

[14] (2013, Dec. 3). Android.Geinimi—Symantec [Online].

[15] (2013, Dec.3). AndroidOS.FakePlayer—Symantec

[Online].

[16] (2013, Dec. 3). Android.Bgserv—Symantec [Online].

[17] (2013, Dec. 3). Plankton [Online].

[18] Naïve Bayes Classification.

