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Abstract - In modern cognitive radio networks, to 

avoid interference from secondary users to primary 

holders with license in spectrum, it is need to have an 

appropriate spectrum sensing. In methods like 

spectrum sensing, where samples of noise are 

correlated, the impairments from independent noise 

samples do not provide optimum performances. So, in 

case of random signals over a weakly correlated noise 

model in fading channels requires a locally optimum 

detection method has been proposed in this paper. A 

low signal to noise ratio regime has derived based on 

the probabilities of false alarm and detection of 

proposed detector. The average probabilities of false 

alarm and detection of proposed detector are derivated 

for different channel gains. The simulation and 

numerical results helps to compare and define that the 

proposed method is more appropriate than the 

conventional energy detection method. Finally we take 

a scenario in which the estimated and real correlations 

are different. The effect of correlation mismatch on the 

probabilities of false alarm and detection in proposed 

method are estimated. 
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I. INTRODUCTION 
The most expensive and limited resource for wireless 
communications are Radio  Frequency (RF) spectrums The 
increase in demands for additional bandwidth has lead to 
these studies which will indicate the spectrum assigned to 
primary license holders are not utilized properly. RF’s 
spectrums are efficiently utilized by Cognitive radio 
technology and the spectrums secondary usages to 
primary users have lower priority. Based on the 
interaction with the environment, a cognitive radio signals 
will change the transmitter parameters. In data 
transmission, secondary users can sense the spectrum and 
use spectrum holes dynamically from primary users with 
the help of cognitive radio signals. Any interference of 

secondary users are not allowed in primary users 
frequencies. Therefore secondary users must be aware of 
the primary user’s presence. Primary license holders are 
detected by their presence and absence with methods like 
spectrum sensing. The method of spectrum sensing is 
tedious task as primary users suffer from fading, 
shadowing, etc. There are other types of spectrum sensing 
techniques like matched filtering, energy detection, 
cyclostationarity-based detection and Eigen value-based 
detection .Among these energy detection is simple 
technique and optimized with impairment of additive 
white Gaussian noise (AWGN).The additive noise samples 
are statistically independent. In this paper we consider 
AWGN exhibits correlation significantly. In applications 
like smart grid monitoring, noise are experimentally 
measured has several characteristics one of them was 
correlations of the time domain. These noise models are 
complex and need Markov transition models. Any real type 
cognitive radio environment signals will have some level 
of noise correlation. The correlation noise models are 
considered for ϵ-mixing noise model, for m−independent 
noise model and for average moving non-Gaussian noise 
models. First order moving average (MA) of an i.i.d is 
considered as weakly correlated noise when the 
dependence is weak. In all these above studies the 
implementation of detection schemes are designed for 
known signals. A detection mechanism like locally 
optimum (LO) of random signals over a weakly correlated 
noise model over fading channels is implemented. In case 
of correlated noise environments, rather than simple 
detection techniques we use to implement LO detection 
techniques. False alarm and detection probabilities are 
used to define LO detection. The above said probabilities 
depend on channel gain hand we need to take average of h 
in order to get final average false alarm and detection 
probabilities. In this paper, we derive some averages of 
these two probabilities in a large no. of channel gains and 
averages are taken. From the probabilities we can 
determine that simulation results obtained are matching 
well with theoretical results. When compared simple 
energy detection with locally optimum detection it is clear 
that later has better performance. Section II in this paper 
includes two hypotheses which details about the presence 
and absence of primary user and also about the model for 
correlated noise samples. Section III includes the 
derivation of locally optimum test statistic in the presence 
of correlated noise. In section IV, we compare locally 
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optimum detector and simple energy detector and the 
performance of energy detector are analyzed and 
parameters required are derivated. All the results above 
these sections are not real scenarios in which there may 
be some errors in the estimation of correlation coefficient. 
In section VI we give false alarm and detection 
probabilities in Numerical and simulation results. In 
section VII conclusions are finally presented. 
 

II. SYSTEM MODEL 
The two hypotheses assumed are, H0 in which the primary 
user is said to be absent and H1 once the first user is said 
to be present, the received signal samples (n = 1, 2, . . .,N) 
at the secondary user for these two types of  hypotheses 
could also be shapely in equivalent complex baseband 
illustration as: 
 
H0 : xn = wn 
H1 : xn = hsn + wn 
 
where, xn, h, and wn denote the received signal, the third 
Baron Rayleigh attenuation channel gain, and also the 
noise samples at the secondary user and Sn is that the 
primary user signal. The channel gain h is assumed to be 
constant throughout the detection method with zero mean 
and also the variance of E[|h|2] = σh

2. The primary user 
signal used to has zero mean, variance σs

2, and it’s real and 
unreal elements square measure statistically freelance and 
has each variance σs

2 /2.The zero mean noise samples 
square measure assumed to own identical variance σn

2. 
The element samples square measure assumed to be 
temporally freelance, identically distributed (i.i.d.) 
.Moreover, we tend to assume that the noise samples, the 
fading  gains, and also the primary user signals square 
measure reciprocally freelance. In this paper we tend to 
assume that the noise samples square measure temporally 
dependent. In straightforward first-order bilateral 
associate degreed unilateral moving averages (MAs) of an 
i.i.d. random method square measure accustomed model 
the feeble correlate noise. They’re straightforward and 
sensible approximations to a feeble correlate noise. We 
tend to contemplate feeble dependent situation 
victimization the unilateral MA of i.i.d. random variables. 
Presumptuous that ei, i = 1, 2, . . .,N, are the i.i.d. random 
variables with common Probability density perform (pdf) 
fe(.), the noise samples w1, w2, . . ., wn can be defined as: 

 
 
Where |ρ| < 1 is the parameter that defines the noise  
Correlation. 
 
 
 
 

III. TEST STATISTIC 
In order to derive a test statistic to recognize between two 
hypothesis H0 and H1, we start with the globally optimal 
(GO) decision statistic expressed as 

 
Where fW is the multivariate pdf of the noise samples and 
X = x1, . . . , xN, S = s1, . . . , sN. For the hypothesis H1, we have 

 
Since the noise samples are dependent, it is not possible to 
write the above multivariate pdf as a multiplication of pdfs 
of its elements. 
 

IV. ENERGY DETECTOR 
We have also analyzed an energy detector (ED) used for 
detection in the presence of correlated noise samples, in 
order to compare its performance with the proposed LO 
detector based on We plan to demonstrate the superiority 
of the proposed locally optimum detector in terms of 
performance compared to the conventional energy 
detection, based on analytical expressions. The test 
statistic for an energy detector can be expressed as 
follows: 

 

 

We explicitly 
derive expressions for the false alarm probability and 
detection probability when this energy detector statistic is 
used under noise conditions that match our correlated 
noise model. 

 
V. CORRELATION MISMATCH 
So far, all the presented results are based on the 
assumption that we have the perfect knowledge about the 
correlation coefficient ρ between noise samples at 
different times. This may not be valid in real scenarios 
where it is possible to have error in estimating the 
correlation coefficient. In order to investigate the effect of 
correlation mismatch in our proposed detector, we denote 
the real correlation coefficient with ρ and the estimated 
one with ˆρ. In order to include these two quantities in our 
analysis, we can start with the test statistics in Equation  
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For H0 hypothesis, 
 

 
 
and therefore 

 
As we can see Λ0 is a summation of dependent random 
variables. Similar arguments can be made to prove that Λ0 
can be considered a asymptotically Gaussian random 
variable when the number of samples N is large enough. It 
can be proved that the random variables in this 
summation are ρ-mixing. By defining 

 
Calculate the mean μ0−m and variance σ2

0−mof the Gaussian 
random variable Λ0. A similar approach can be followed 
for Λ1, and the parameters of these distributions can be 
used to compute false alarm and detection probabilities 
under mismatch conditions 
 
VI. NUMERICAL RESULTS AND DISCUSSIONS 
At secondary user a fading channel with weakly correlated 
noise, N=500 samples are taken. In case of slow fading 
channel, the fading coefficient h is constant for a given 
sampling period. Let the detection probability is taken as 
0.95 and different signal to noise ratios(SNRs, defined as 
SNR = σh

2σs
2  /σn

2)) are calculated to find average false 
alarm probabilities for both proposed  locally optimum 
detector model and conventional energy detector model. 
Theoretical analysis are found and compared with 
analytical results from the average false alarm 
probabilities from simulations over one lakh independent 
realizations of the Rayleigh fading channels.Fig1 shows 
average false alarm probability for correlation coefficient 
ρ = 0.5.Primary users can be implemented by 8-PSK.From 
Fig1,we can compare false alarm probability of the locally 
optimum detector are lower than the energy detector and 
also there are very small errors when simulation and 
analytical results are verified. Now let us take the false 
alarm probability as 0.05 and also average detection 
probabilities for different SNR’s are defined. From Fig 2, 
the energy detector and proposed detector are compared 
where the proposed detector has higher detection 
probability and results of simulation are very closer to the 
analytical results. The effects of no. of samples on the 
detection performance are also considered. Different 

correlations for energy detection and LO detection are 
considered. 
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Energy Detection  p=0.5

 
Fig.1 Average false alarm probabilities using analytical 
results as well as simulation results at different SNRs for 
detection probability of 0.95 and ρ = 0.5. 
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 Fig 2 Average detection probabilities using analytical 
results as well as simulation results at different SNRs for 
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false alarm probability of 0.05 and  ρ = 0.5. 
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 Fig 3 Average false alarm probabilities versus the number 
of samples for detection probability of 0.95 
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Fig 4 Average detection probabilities versus the number of 
samples for false alarm probability of 0.05 
 
The figures, Fig 3 and Fig 4 shows average false alarm and 
detection probabilities. With the increase in number of 
samples the false alarm probabilities gets lower and 
detection probabilities gets higher. In figures, all the 
curves have rate of decreasing Pf with increasing Pd  and is 
higher at the beginning with lower samples are decreased 
when number of samples increases. For all values of N, for 

each correlation the LO detection proposed is much better 
than conventional energy detection. With high correlation 
between two methods the difference between the values 
of Pf are more. For each curve, we compare the simulation 
and analytical results and the results is the matching 
between them has very less errors. 
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Fig 5 Average false alarm probabilities at different SNRs 
for detection probability of 0.95 and different correlation 
coefficients. 
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Fig 6 Average detection probabilities at different SNRs for 
false alarm probability of 0.05 and different correlation 
coefficients. 
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Fig7 Detection probabilities at different SNRs for false 
alarm probability of 0.05, for the case the estimated 
correlation is 0.5 and the actual 
correlation

-30 -25 -20 -15 -10 -5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

D
e
te

c
ti
o

n
 P

r
o

b
a

b
il
it

y
, 

P
d

 

 

p=0.1

p=0.3

p=0.5

p=0.7

p=0.9

 
Fig 8 False alarm probabilities at different SNRs for 
detection probability of 0.95, for the case the estimated 
correlation is 0.5 and the actual correlations of 
[0.1:0.2:0.9]. 
 
 In Fig 5 and Fig 6, different correlation coefficients ρ are 
taken and average probabilities of false alarm and 
detection are shown. In Fig 5 the gain of proposed detector 
becomes high with increase in correlation coefficient. Let 

us take an example ,to achieve a false alarm probability of 
0.2,the LO detector has 1.2dB,3 dB and 11 dB gain for the 
energy detector of correlation coefficients 0.3,0.5,0.9 
respectively. From Fig 6, it is clear that gain is higher when 
the correlation coefficient is higher in proposed detector 
compared with energy detector. Let us consider an 
example that to have a detection probability of 0.2, the LO 
detector has 1.2dB, 3dB, 12dB gain for the correlation 
coefficients 0.3, 0.5 and 0.9 respectively over energy 
detector. The energy detector and proposed detector will 
have same false alarm and detection probabilities when 
the correlation coefficients are equal to zero. So far 
concerned all the figures are obtained from perfect 
knowledge about the correlation coefficients of the 
detector. In situations where estimated correlation 
coefficient ˆρ is different from the estimated coefficient ρ 
the false alarm and detection probabilities are calculated. 
Fig 7 and Fig 8 shows the false alarm and detection 
probabilities with estimated correlation is 0.5 and the 
actual correlations of[0.1:0.2:0.9].Fig 7 shows detection 
probability decreases with the increase in the difference 
between estimated and actual correlation coefficients. For 
ˆρ = ρ = 0.5 detection probability will be maximum. 
Degradation in performance depends on the absolute 
values obtained from the difference between the 
estimated and actual correlation values. In situations 
where ρ = 0.1 and ρ = 0.9 have the similar performances. 
 
 

VII. CONCLUSION 
A locally optimum detector for detection of random 
signals under a weakly correlated noise model over fading 
channels has been proposed. For a correlation mismatch, 
normal situations where the estimated correlations 
between noise samples are not equal to actual correlations 
are considered. For various channel gains, the false alarm 
and detection probabilities are derived for a particular 
channel gain h and then average of these probabilities are 
derived. In order to compare the performance of proposed 
model over energy detector common correlated noise are 
taken. The numerical and simulation results obtained from 
the probabilities of false alarm and detection clearly 
explains that LO detector has less false alarm probability 
and high detection probability when compared with 
energy detector. Higher the correlation coefficient, gain 
also becomes higher in case of proposed detector when 
compared to energy detector. The performance of 
proposed detector and energy detector will be same when 
there is no correlation. When there is a mismatch of 
correlation, the false alarm and detection probabilities are 
calculated. It is clear from the results that if correlation 
mismatches are higher then the detection probabilities 
becomes lower and false alarm probabilities gets higher. 
The valueˆρ = ρ is a perfect estimation case which results 
highest detection probability and lowest false alarm 
probability. The degradation in the performance is 
dependent on absolute value of the variations between 
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estimated and actual correlated values. The correctness of 
analytical results over simulation results are verified 
based on false alarm and detection probabilities. In this 
paper, the most important assumption is primary user 
samples are independent over time. For situations where 
time correlation between primary user samples is more, a 
spectrum sensing technique could be implemented. In 
future, Eigen decomposition-based sensing techniques are 
to implement in which both primary user signal and noise 
are correlated to each other. 
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