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ABSTRACT - Various innovation adaptive algorithms 
are presented for the beamforming of smart antennas 
in wireless communication system.  These leading 
techniques show the improvement in capacity, quality 
and coverage. A consolidated study of some of adaptive 
beamforming algorithms are presented in this research 
work. In the beginning time domain and frequency 
domain processing of signals is described, then 
beamforming techniques like Side Lobe Cancellers, 
Linearly Constrained Minimum Variance (LCMV), Null 
Steering Beamforming, Sample Matrix Inversion (SMI) 
Algorithm, Least Mean Squares (LMS), Frost 
Beamforming, and MVDR DOA estimation are discussed 
and compared. 

 

INTRODUCTION 
Beamformingisverywell-

knownsignalprocessingtechniquefortransmissionandrecei

vingofthesignals.Beamformingtechniqueusedinsensorarra

yfordirectionalsignals.Thistechniquebasicallyallowsthesig

nalreceivingfromaparticulardirectionandrejectorsimplyatt

enuatedthesignalwhichiscomingfromotherdirections.Inthi

stechniquethearrayofantennasisexploitedinaparticulardir

ection,byvaryingtheweightsofeachsensorantennas.Itisesti

matedthatsignaliscomingfromthisparticulardirection.Opti

mizationofweightadaptionofsensorarrayisdonebycomplex

algorithms.Becauseofweightadaptationthistechniqueisalso

calledadaptivebeamformingtechnique[1]. 

Adaptivebeamformingtechniqueisinitiallydevelopedinearl

y1960’sinsonarandradarinmilitaryapplications[2,3].Howe

verwiththeadvancementinalgorithms,itextendtoseveralbio

medicalultrasonicimagingandseismicapplications[4].Vario

usbeamformingtechniquesareproposedsincethen.Widelyt

hesebeamformingtechniquesareclassifiedastimedomainsig

nalprocessinginbeamformingandfrequencydomainsignalp

rocessinginbeamforming. 

 

TIME DOMAIN SIGNAL PROCESSING IN 

BEAMFORMING 

Aspace- 

timeprocessorassociatesspatialfilteringwithtemporalfilteri

ng,asshowninFig.1.Withregardtospatialfiltering,thesignals

comingtoeachantennaelementaremultipliedbyweights.For

timeprocessing,atapped-delay-

line(TDL)isusedoneachbranchofthearray,whichallowseach

elementtohaveaphaseresponsethatvarieswithfrequency,co

mpensatingforthefactthatlowerfrequencysignalcomponent

shavelessphaseshiftthanhigherfrequencysignalcomponent

sforagivenpropagationdistance.Thisconfigurationcanbeco

nsideredtobeanequalizer,whichmakestheresponseofthearr

aythesameacrossdifferentfrequencies[5,6,7]. 

 

 
Fig-1:Timedomainprocessing[8] 

 

FREQUENCY DOMAIN SIGNAL PROCESSING IN 

BEAMFORMING 

Inthisconfiguration,thewidebandsignalisconvertedtoanint

ermediatefrequencyanddecomposedintonon-

overlappingnarrowbandsignalsusingband-

passfiltersasshowninFig.2.Thedecomposedsignalsareweig

htedwithaconventionalnarrowbandweightingscheme,andt

hensummedtoformtheoutput.Thisapproachprovidesaneas

edealingwithawidebandsignalduetotheuseofconventionaln

arrowbandweightingscheme.However,therequirementofal

argenumberoffiltersincreasethecostofthesystem,andalso,fi

ltersimperfectionmightintroduceotherproblems,thereforet

hisapproachisnotverysuitableforpracticalapplications[5,6]

. 
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Fig-2:Frequencydomainprocessing[8] 

 

BEAMFORMING TECHNIQUES 

Review of beamforming was studied in terms of the 

Physical components needed to perform such a task. While 

at this point that topic is well understood, it is still not 

known how to determine the weights necessary for 

beamforming. In the following discussion, it is desired to 

study means in which specific characteristics of the 

received signal incident upon the array (in addition to the 

spatial separation among users in the environment) can be 

exploited to steer beams in directions of desired users and 

nulls in directions of interferers. In particular, the Mean 

Square Error (MSE) criterion of a particular weight vector 

will be minimized through the use of statistical 

expectations, time averages and instantaneous estimates. 

As well, the distorted constant modulus of the array 

output envelope due to noise in the environment will be 

restored. 

 

SIDE LOBE CANCELLERS 

This simple beamformer shown below consists of a main 

antenna and one or more auxiliary antennas. The main 

antenna is highly directional and is pointed in the desired 

signal direction. It is assumed that the main antenna 

receives both the desired signal and the interfering signals 

through its side lobes. The auxiliary antenna primarily 

receives the interfering signals since it has very low gain 

in the direction of the desired signal. The auxiliary array 

weights are chosen such that they cancel the interfering 

signals that are present in the side lobes of the main array 

response. 

 
 

Fig-3: Side lobe canceller beamforming 

If the responses to the interferers of both the channels are 

similar then the overall response of the system will be 

zero, which can result in white noise. Therefore the 

weights are chosen to trade off interference suppression 

for white noise gain by minimizing the expected value of 

the total output power. Therefore the criteria can be 

expressed mathematically as follows; 

 
The optimum weights which correspond to the sidelobe 

canceller’s adaptive component were found to be 

 

is the auxiliary array correlation 

matrix and the vector is the cross correlation between 

auxiliary array elements and the main array. This 

technique is simple in operation but it is mainly effective 

when the desired signal is weaker compared to the 

interfering signals since the stronger the desired signal 

gets (relatively), its contribution to the total output power 

increases and in turn increases the cancellation 

percentage. It can even cause the cancellation of the 

desired signal [9]. 

 

2. LINEARLY CONSTRAINED MINIMUM VARIANCE 

(LCMV) 

Most of the beamforming techniques discussed require 
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some knowledge of the desired signal strength and also 

the reference signal. These limitations can be overcome 

through the application of linear constraints to the weight 

vector. LCMV spatial filters are beamformers that choose 

their weights so as to minimize the filter's output variance 

or power subject to constraints. This criterion together 

with other constraints ensures signal preservation at the 

location of interest while minimizing the variance effects 

of signals originating from other locations. 

In LCMV beamforming the expected value of the array 

output power is minimized, i.e. 

 

is minimized subject 

to  
where Rx denotes the covariance matrix of x(t), C is the 

constraint matrix which contains K column vectors and is 

the response vector which contains Kscalar constraint 

values.  

The solution to the above equation using Lagrange 

multipliers gives the optimum weights as 

 

 

This beam forming method is flexible and does not require 

reference signals to compute optimum weights but it 

requires computation of a constrained weight vector. C [9]. 

 

3. NULL STEERING BEAMFORMING 

Unlike other algorithms null steering algorithms do not 

look for the signal presence and then enhance it, instead 

they examine where nulls are located or the desired signal 

is not present and minimize the output signal power. One 

technique based on this approach is to minimize the mean 

squared value of the array output while constraining the 

norm of the weight vector to be unity. 

 

 

 

The matrix A, a positive-definite symmetric matrix, serves 

to balance the relative importance of portions of the 

weight vectors over others [9].  

 

4. SAMPLE MATRIX INVERSION (SMI) 

ALGORITHM 

In practice, the mobile channel environment is constantly 

changing making estimation of the desired signal quite 

difficult. These frequent changes will require a continuous 

update of the weight vector, which would be difficult to 

produce for reasons already stated. However, Reed, Mallet, 

and Brennan [31] proposed an estimate to the Weiner 

solution through the use of time averages called Sample 

Matrix Inversion (SMI). Suppose we takeK time samples of 

the received signal to form an input data matrix, X, defined 

by 
 

 
 

Where; and so on for the input 

data model. 

An estimate of N*N covariance matrix xx, can then formed 

by total average over K samples, and given by: 
 

x= t(k) 

 

For the rapidly changing environment, it is possible to 

estimate blocks of data that can repeat the process 

periodically. We can alter the input data matrix X, to 

reflect the dynamic block size of K samples. 

 

For; 

l=1,2,3,…..,L 
 

The desired signal vector can be altered to reflect 0.this 

dynamic block size as well. 
 

 
 

Fig-4: MSE of Dynamic SMI Method w/block size of 10 
 

From the above results, we can see that the error for each 

iteration is very small. The stability of the SMI method 

depends on the ability to invert the NxN estimate of the 

covariance matrix given in equation 4.11. Typically, noise 

is added to the system to offset the diagonal elements of 

the input data vector in order to avoid singularities when 

inverting the covariance matrix. These singularities are 
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caused by the number of received signals to be resolved 

being less than the number of elements in the array. The 

SMI method is a particularly desirable algorithm to 

determine the complex weight vector due to the fact that 

the convergence rate is usually greater than a typical LMS 

adaptive array and is independent of signal powers, AOA’s 

and other parameters. The number of multiplications 

needed to form the estimated covariance matrix is 

proportional to N 3. Also, the number of linear equations 

needed to solve equation 4.16 increases as N 3. 

 

Therefore, the SMI method operates at its best when the 

number of elements in the adaptive ray is small. Figure 4.4 

below depicts the beampattern for an 8-element ULA 

where the weights ere determined using the SMI method. 

We assume a multipath scenario where the received signal 

is a polar NRZ waveform whose values appear with equal 

probability. The desired user’s amplitude was five times 

greater than that of the multipath component. The desired 

user’s AOA was -45o and the interferer’s AOA were 30 [9]. 

 

5. LEAST MEAN SQUARES [LMS] 

This algorithm was first developed by Widrow and Hoff in 

1960.The design of this algorithm was stimulated by the 

Wiener-Hopf equation. By modifying the set of Wiener-

Hopf equations with the stochastic gradient approach, a 

simple daptive algorithm that can be updated recursively 

was developed. This algorithm was later on known as the 

least-mean-square (LMS) algorithm. The algorithm 

contains threestepsineachrecursion:thecomputation ofthe 

processed signal with the current set of weights, the 

generation of the error between the processed signal and 

the desired signal, and the adjustment of the weights with 

the new error information [10, 11].The following 

equations summarize the above three steps. 

 

 
 

 
 

 

 

The w in the above equations is a vector which contains 

the whole set of weights.The H represents the Hermitian 

transpose of a vector. Here, we have taken eight elements, 

so there are eight for each symbol received at time n. All 

eight weights are updated according in each recursion.At 

time zero, all weights are initialized to have a value of 

zero. The symbol µ is called the step size parameter. The 

value of this parameter affects the settling time and the 

steady state error of the LMS algorithm. A large step-size 

allows fast settling but causes poor steady state 

performance [12]. 

 

6. FROST BEAMFORMING 

Frost’s beamformer Fig. 5 (a) consists of an array with K 

sensors, where each sensor is followed by a transversal 

filter with J weights. The number of weights is equal for all 

transversal filters. The sum of the filter outputs is the 

beam former output. Weights are updated by Frost’s 

constrained least mean square (CLMS) algorithm which 

minimizes the mean square error of the output signal 

while satisfying a constraint. In order the input signal s(t) 

to be passed without any distortion, the impulse response 

of the whole system must be equal to the unit impulse. 

This impulse response represents the constraint for the 

weights of all filters. The whole system can be replaced by 

one transversal FIR filter for the signals s(t). 

The replacement is shown in Fig.4 (b), where f1, f2, . . . , fj 

is the impulse response for the signal. Constraint 

equations can be written also in matrix form as: 

 

W = ,    (1) 

 

Where W stands for weight matrix with actual elements 

 

   (2) 

 

To discuss the Frost’s beam former behavior in details, let 

us define some terms needed. The digitized input noisy 

signals xi[n], i = 1,2, . . . , JK are formed by components of 

both clean signals(t) and noise n(t). The vector ˜x[n] 

represents noisy signals on taps, the vector w consists of 

weights value, and the vector F represents the constrained 

impulse response and the matrix C will be used in 

constraint formulation 

 

˜xT[n] = [x1[n] x2[n] . . . x jk[n] ], 

 

wT= [w1  w2 . . . w jk], 

 

FT= [f1 f2 . . . f j], 

 

C = [c1 c2 . . . c j].    (3) 



          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

               Volume: 02 Issue: 05 | Aug-2015           www.irjet.net                                                      p-ISSN: 2395-0072 

 

© 2015, IRJET                                    ISO 9001:2008 Certified Journal                                                                    Page 719 
 

 

Elements Ci represent the column vectors of length jk with 

(i−1) K zeroes followed by K ones and (J−i) K zeroes 

 

cT
i=  [0   0 ….  0   1   1 ….  1   0   0 ….  0] 

 

(4) 

(i−1)K zeroes     k ones      (j-i)k zeroes 

 

Now the problem of finding the optimum weight vector for 

a stationary signal w opt (Wiener solution) can be 

formulated. The weight vector minimizing E [y2 [n]] = w 

te[˜x [n]˜x [n]T] w = wTR xx w and satisfying the constraint 

CT w=F have to be found. Rxx stands for the autocorrelation 

matrix. In [13] the method of Lagrange multipliers was 

used to obtain the Wiener solution. 
 

wopt=R −1
xxC(CTR−1

xxC)−1F   (5) 
 

and the adaptive CLMS algorithm 
 

w [0] = f, 
 

w [n+ 1] = P(w[n] −µy[n]˜x[n]) + f.   (6) 
 

The vector f and the projection matrix Pare defined as 
 

f = C (CTC) −1F, 
 

P = E−C (CTC) −1CT.    (7) 
 

Positive scalar µ is a step-size parameter. The choice of µ is 

the trade of between theconvergence time and the miss 

adjustment of weights from Wiener solution. An easily 

computable upper bound for µ is given by µ <2/(3E[˜xT˜x]). 

 

 
 

Fig-5: (a) Frost’s beam former structure, 

(b) Frost’s beam former from s(t) view - constraint 

formulation 

 

The convergence performance and the choice of µ is 

deeply discussed in [14]. 

 

The alternative form of equation (6) for the 

implementation is 
 

W i[n+ 1] =wi[n] −µ y [n]xi[n]−  

 
 

7. MVDR DOA ESTIMATION 

There are two types of MVDR DOA estimation techniques. 

First, the MVDR DOA spectrum and polar plot for 

estimated directions. 

Let DOAs of incoming signals, Angle of Incidence of the 

desired source signal {60°}, and the angle of incidence of 

the undesired interference source signal {45°, 30°, 75°}.  

SNR is assumed to be 10 db for all incoming sources as 

shown in fig. 6. 

 
Fig-6: Linear array 
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Fig-7: Polar Plot of MVDR Beamforming 

Second,  Null  steering beamforming  for  the single desired 

user  a single  desired  source  is  considered  in  direction 

φ = 40°. Weights are calculated using Eq (A) to produce a 

beam in the direction of desired user (φ = 40°) and null in 

the direction  of  interferences  (30°,  60°,  100°) [15].  The  

Fig.8  shows  the  power  spectrum  and  polar  plot  for  

null  steering beamforming respectively. 

 

Y(n)=WH(n)*(n)   (A) 

. 

 
Fig-8: Power spectrum of MVDR Beamforming 

 

CONCLUSION 

It was shown that beamformers could be expected to 

operate on signals in a wide frequency range, and it is 

therefore important to consider the nature of the signals 

to be processed. Low pass sampling is sufficient for low-

frequency signals, however for high frequency band-pass 

and narrowband signals,band pass sampling techniques 

must be adopted. It was also shown that interpolation 

could be used to increase the effective sampling frequency. 

 

Beamforming was introduced using the simple time do 

main beamformer and later extended using interpolation 

and quadrature sampling. Beamforming in the frequency 

domain was also discussed, and in some cases may be 

more efficient method of forming simultaneous beams. 

MATLAB simulations were given for each beamformer to 

supplement the understanding of the operations required 

in the beamformer. The simulations also give an insight 

into design considerations and specifications of areal 

implementation. 
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