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Abstract -  In this paper, we propose and analyze a 

new non-monotone adaptive trust region method for 

unconstrained optimization problems. Actually, we 

combined a new strategy of non-monotone line search 

with the ratio of actual reduction and the predicted 

reduction within a traditional trust region method. Then 

some properties of the new algorithm are analyzed. 

Theoretical analysis shows that the new proposed 

method has a global convergence under some mild 

conditions. 
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1.INTRODUCTION 

 

Consider the following unconstrained optimization 

problem: 

min ( ), ,nf x x RÎ               (1) 

where : nf R R®  is a twice continuously differentiable 

function. Through out this paper, we use the following 

notation: 

 || ||×  is the Euclidean norm. 

 ( ) ng x RÎ  and ( ) n nH x R ´Î  are the gradient and 

Hessian matrix of f  evaluated at x , respectively. 

 
2( ), ( ), ( )k k k k k kf f x g g x H f x= = = Ñ  and 

kB  is a symmetric matrix which is either kH  or an 

approximation of kH . 

 

Traditional iterative methods for solving (1) are either line 

search method or trust region method. It is well known 

that trust region method is a kind of important and 

efficient methods for nonlinear optimization. This method 

is based on the following idea: at each iterate kx , a trial 

step kd  is usually computed by solving the quadratic 

sub-problem: 

1
min ( ) ,

2

. . || || .

T T

k k k k

k

m d f g d d B d

s t d

= + +

£ D

    (2) 

 

A crucial issue in solving sub-problems is a strategy for 

choosing the trust radius kD . In the traditional 

trust-region method, the radius kD  is determined based 

on a comparison between the model and the objective 

function. This leads the traditional trust-region method to 

define the following ratio 

( ) ( )k k k
k

k

f x f x d
r

pred

- +
= ,              (3) 

where the numerator is called the actual reduction and the 

denominator is called the predicted reduction which is 

defined as 

(0) ( )k k k kpred m m d= - .             (4) 
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It is clear that there is an appropriate agreement between 

the model and the objective function over the current 

region whenever kr  is close to 1, so it is safe to expand 

the trust region radius kr  in the next iterate. In addition, if 

kr  is a so small positive number or a negative number, the 

agreement is not appropriate and so the trust region kr  

should be shrunk. 

 

It is well known that the standard trust region method is 

very sensitive on initial radius, see [2, 10]. Furthermore, 

the radius kD  in (2) is independent from any information 

about kg  and kB . These facts cause an increase in the 

number of sub-problems in some questions that need 

solving which decreases the efficiency of these methods. In 

order to reduce the number of sub-problems that need 

solving, Zhang et al. proposed a strategy to determine the 

trust region radius [11]. Inspired by Zhang’s method, Shi 

and Guo proposed a trust region method which can 

automatically adjust the trust region radius in [2]. They 

also proposed a new adaptive radius for the trust region 

method in [1]. Actually, they choose parameters 

( ), 0,1m r Î , and kq  to satisfy the following angel 

condition 

cos , ,
|| || || ||

T

k k
k k

k k

g q
g q

g q
t- = - ³

×
      (5) 

where (0,1]t Î , and set 

T

k k
k T

k k k

g q
s

q B q
= ,                 (6) 

in which kB  is generated by the procedure: 

2|| ||T T

k k k k k k kq B q q B q i q= + , and i  is the smallest 

nonnegative integer such that 

2|| || 0,T T

k k k k k k kq B q q B q i q= + >        (7) 

so, they proposed a new trust region radius as follows 

|| ||,k k kqaD =                (8) 

where 
p

k ksa r= , and p  is the least positive integer 

number so that 

,kr m³                     (9) 

they proved that the new adaptive trust region method has 

global, super-linear and quadratic convergence properties 

and is a numerically efficient method. 

 

On the other hand, in 1982, Chamberlain et al. in [9] 

proposed the watchdog technique for constrained 

optimization to overcome the Maratos effect. Motivated by 

this idea, Grippo et al. introduced a non-monotone line 

search technique for Newton’s method in [14, 15]. Due to 

the high efficiency of non-monotone techniques, many 

authors are interested in working on the combination of 

non-monotone techniques and trust region methods [5, 12, 

13, 16, 18]. Let 

{ }( ) ( )
0 ( )

( ) max , 0,1, 2,...l k l k k j
j m k

f f x f k-
£ £

= = =

                                       (10) 

where ( ) min{ , }m k M k=  and 0M ³  is an integer 

constant. Actually, the most common non-monotone ratio 

is defined as follows: 

µ ( ) ( )l k k k

k

k

f f x d
r

pred

- +
= . 

 

It is obviously that this ratio is more relaxed in comparison 

with (3) and some researchers showed that utilizing 

non-monotone techniques may improve both the 

possibility of finding the global optimum and the rate of 

convergence [14, 19]. However, although the 

non-monotone technique has many advantages, it contains 

some drawbacks [7, 8, 19]. To overcome those 

disadvantages, Ahookhosh et al. in [7, 8] proposed a new 

non-monotone technique to replace (10). They define 

( ) (1 ) ,k k l k k kR f fh h= + -            (11) 

where min max min[0,1), [ ,1]h h hÎ Î  and 

min max[ , ]kh h hÎ . At the same time, they have the new 

non-monotone ratio: 
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( )
.k k k

k

k

R f x d
r

pred

- +
=             (12) 

 

The form (11) has the following advantages when 

compared with (10): 

 Fully employing useful properties of the current 

objective function value kf . 

 By choosing an adaptive kh , we can own the better 

convergence results. Because it has been proved that 

the best convergence results are obtained by stronger 

non-monotone strategy when iterations are far from 

the optimum, and by weaker non-monotone strategy 

when iterations are close to it [19]. 

 

In recently years, some researchers have combined the 

adaptive trust region method with the non-monotone 

technique (10) and good numerical results have been 

achieved [3, 4, 6, 10]. However, the adaptive trust region 

method with the non-monotone technique (11) has not 

been studied, which is the focus of this paper. In this paper, 

we incorporate a more efficient adaptive trust region 

method proposed by Shi and Guo in [1] with the 

non-monotone technique (11) in order to propose the new 

non-monotone adaptive trust region method. The global 

convergence of this method is analyzed under some 

suitable conditions. 

 

The rest of this paper is organized as follows. In Section 2, 

we introduce the new adaptive trust region method. In 

Section 3, we analyze the new method is well-defined and 

prove the global convergence. Some conclusions are given 

in Section 4. 

 

2.NEW ADAPTIVE TRUST REGION METHOD 

 

In this paper, we consider the following assumptions (the 

same with [6]) that will be used to analyze the 

convergence properties of the below new algorithm: 

(H1) The objective function ( )f x  has lower bound on 
nR  and the gradient ( ) ( )g x f x= Ñ  of ( )f x is 

uniformly continuous on open convex setWthat contains 

the level set 0 0{ | ( ) ( )}nL x R f x f x= Î £ ,  where 

0

nx RÎ  is given.  

(H2) The matrix kB  is a uniformly bounded matrix, i.e. 

there exists a constant 0 0M >  such that 0|| ||kB M£  

for all .k Î ¥  

 

The new non-monotone adaptive trust region method can 

be described as follows: 

Algorithm 1 (A new non-monotone adaptive trust region 

method) 

Step 1 An initial point 0

nx RÎ  and a symmetric matrix 

0

n nB R ´Î  are given. The constants 0 1,m< <  

0 1,r< <  0M ³  and 0e >  are also given. 

Compute 0( )f x  and set 0k =  and 0p = . 

Step 2 Compute kg . If  || ||kg e£  then stop, else go to 

Step 3. 

Step 3 Choose kq  to satisfy (5). 

Step 4 Solve (2) to determine kd , and set 

1k k kx x d+ = + . 

Step 5 Compute ( ) ( ), , ,l k k km k f R pred  and kr . If  

kr m< , then set 1p p= + and go to Step 3. 

Step 6 Set 1 1=k kx x+ + , generate 1kB +  by a quasi Newton 

updating formula, set 1k k= +  and go to Step 2. 

 

Obviously, in the case of 0M = , the new algorithm 

reduces to the adaptive trust region algorithm proposed by 

Shi and Guo [1]; in the other case of 1kh = , it reduces to 

the non-monotone adaptive trust region algorithm 

presented in [3] and [6]. 

 

We need the following lemmas in order to prove the 

convergence of the new algorithm. 

Lemma 1 (see [2]) Assume that Algorithm 1 generates an 

infinite sequence { }kx . Then  

1
.

2

T

k k k kpred g qa³ -  

Lemma 2 (see [11]) Suppose that the sequence { }kx  be 

generated by Algorithm 1, then we have 

2( ) ( ) (|| || )k k k k kf x f x d pred O d- + - = . 
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Lemma 3 Suppose that (H1) and (H2) hold. Then Steps 4 

and 5 of the new non-monotone adaptive trust region 

algorithm are well-defined, i.e., in each iteration, these steps 

are terminated after finite iterates. 

Proof. It is similar to Lemma 2.3 in [6]. We can prove that 

for p  sufficiently large, kr m³  holds. Now, by (10), we 

have 

( )

( )

(1 ) ( )

( )

k k k
k

k

k l k k k k k

k

k k k

k

k

R f x d
r

pred

f f f x d

pred

f f x d

pred

r

h h

m

- +
=

+ - - +
=

- +
³

= ³

 

Thus, Steps 4 and 5 of the new non-monotone adaptive 

trust region algorithm are well-defined. 

Lemma 4 Suppose that the sequence { }kx  is generated 

by Algorithm 1. Then, for all k Î ¥ , we have 0( )kx L xÎ  

and ( ){ }l kf  is a decreasing sequence. 

Proof. Using definition of kR  and ( )l kf , we observe that 

( )

( ) ( )

( )

(1 )

(1 )

.

k k l k k k

k l k k l k

l k

R f f

f f

f

h h

h h

= + -

£ + -

=

         (13) 

By induction, we will show that 0( )kx L xÎ , for all 

k Î N .The result evidently holds for 0k = . Assume that 

0( )kx L xÎ , then we show that 1 0( )kx L x+ Î . From 

definition of Algorithm 1, we have that 0kr m³ > , so by 

0kpred > , we have 

1 1.k k k kR pred f fm + +³ + ³            (14) 

So by (13) and (14), we know that 

1 ( ) 0 .k k l kf R f f k+ £ £ £ " Î ¥，        (15) 

Obviously, 1 0( )kx L x+ Î , thus, the sequence { }kx  is 

contained in 0( )L x . 

The rest of proof that the sequence ( ){ }l kf  is 

decreased is similar to Lemma 2.1 in [8].  

Lemma 5 Suppose that the sequence { }kx  be generated 

by the Algorithm 1, then we have  

1 1 ,k kf R k+ +£ " Î ¥， .             (16) 

Proof. From the definition of ( 1)l kf + , we have 

1 ( 1)k l kf f+ +£ , for any k Î ¥ . Hence, (16) holds by the 

following inequality 

1 1 1 1 1

1 ( 1) 1 1

1

(1 )

(1 )

,

k k k k k

k l k k k

k

f f f

f f

R k

h h

h h

+ + + + +

+ + + +

+

= + -

£ + -

= " Î ¥

. 

Lemma 6 Suppose that (H1) holds and the sequence { }kx  

is generated by Algorithm 1. Then the sequence ( ){ }l kf  is 

convergent. 

Proof. Lemma 4 together with (H1) imply that 

( ) ( 1) ( ). . : k n l k n l k l ks t n f f f fl l + + +$ " Î £ £ £ ×××£ £¥

This shows that the sequence ( ){ }l kf  is convergent. 

 

3.GLOBAL CONVERGENCE 

 

It is well-known that trust-region methods have strong 

global convergence [17, 19]. In this section, we discuss 

some convergence properties of the new trust region 

algorithm, and show that our proposed method has global 

convergence. 

 

In order to attain the global convergence, we need some 

additional conclusions as follows:  

Lemma 7 (See Lemma 3.1 in [6]) Suppose that { }kx  is 

generated by Algorithm 1 and || ||k kd £ D , then there 

exists a constant 0c >  such that the trial step kd  

satisfies 

|| || || ||k kd c g£ . 

Lemma 8 (See Lemma 7 in [7]) Suppose that the sequence 

{ }kx  be generated by Algorithm 1, then we have 

( )lim ( ) lim ( ).l k k
k k

f x f x
® ¥ ® ¥

=          (17) 

Corollary 9 Suppose that the sequence { }kx  be 

generated by Algorithm 1, then we have 

lim lim ( ).k k
k k

R f x
® ¥ ® ¥

=            (18) 
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Proof. From (13) and (16), we observe 

( ).k k l kf R f£ £  

This completes the proof by using Lemma 8. 

Theorem 10 Suppose that (H1) and (H2) hold, then 

Algorithm 1 either stops at stationary point of ( )f x  or 

generates an infinite sequence { }kx  such that 

lim 0.
|| ||

T

k k

k
k

g q

q® ¥

-
=               (19) 

Proof. If Algorithm 1 doesn’t stop at a stationary point, we 

use the reduction to absurdity to prove (19) holds. Suppose 

that Algorithm 1 generates an infinite sequence { }kx  and 

(19) doesn’t holds. Which implies that there exist a 0e >  

and an infinite subset {0,1,2,...}K Í , such that 

, .
|| ||

T

k k

k

g q
k K

q
e

-
³ " Î             (20) 

From Remark 2.2 in [6], we have 

1 1>0 . . || || ,kM s t B M k$ £ " , 

thus, 

2

1 || || ,T

k k k kq B q M q k£ " .        (21) 

Let 1 { }k kK k K sa= Î =  and 

2 { }k kK k K sa= Î < . Obviously, 1 2K K K= È  is an 

infinite subset of the set {0,1,2,...} . Now, we prove that 

neither 1K  nor 2K  can be an infinite set which 

contradicts (20). To do so, we consider the following two 

cases: 

Case 1： 1k KÎ . Let 1K  be an infinite subset of K , by 

using of Lemma 1 and (21), we get 

2

2

2

1

1 1

1
( )

2

( )1 1

2 2

,
2 || || 2

T

k k k k k k k

T
T k k

k k k T

k k k

T

k k

k

R f x d pred g q

g q
s g q

q B q

g q
k K

M q M

m ma

m m

m m
e

- + ³ ³ -

³ - =

æ ö
÷ç ÷³ ³ Îç ÷ç ÷çè ø

 

As k ® ¥ , the above inequality along with 

Corollary 9 implies 

2

1

0
2M

m
e³ . 

Which is a contradiction and shows that 1K  cannot be an 

infinite subset of K . 

Case 2：
2k KÎ . Let 

2K  be an infinite subset of K , 

Lemma 1 implies 

1
( )

2

1 1
= .

2 || || 2

T

k k k k k k k

T

k k
k k

k

R f x d pred g q

g q

q

m ma

m m e

- + ³ ³ -

- D ³ D

 

As k ® ¥ , the above inequality along with Corollary 9 

implies 

2lim 0, .k
k

k K
® ¥

D = Î           (22) 

Now, suppose that kd  is an optimal solution of the 

following sub-problem 

1
min ( )= ,

2

. . || ||

T
T

k k k k k k k k

k k

m d f g d d B d

s t d

+ +

£ D

. 

where ,k k k kr a a rD = D = . 

Then, following the steps of Algorithm 1, we have 

2

( )
, .k k k

k

R f x d
k K

pred
m

- +
< Î        (23) 

On the other hand, (22) implies that 

2lim 0, .k
k

k K
® ¥

D = Î              (24) 

Now, using Lemma 1, Lemma 2, (20) and (24), we have 
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2
2

2 2

2

( ) ( )
1

(|| || ) ( )

1

2

( ) ( )
, .

1 1
|| ||

2 2

k k k k
k

k

k k

Tk
k k k

k k

T

k k k k k

f x f x d pred
r

pred

O d O

pred
g q

O O
k K

g q q

a

e

- + -
- =

D
= £

-

D D
= £ Î

- D D

 

As k ® ¥ , this inequality tends to zero. Therefore, in 

this case the monotone ratio is well defined. From the 

above facts and (16), we observe 

( ) ( ) ( )k k k k k k

k k

R f x d f x f x d

pred pred
m

- + - +
³ ³ . (25) 

Thus, we can indicate that the new non-monotone ratio is 

also well defined. However, for a sufficiently large 2k KÎ , 

(25) contradicts (23), it shows that 2K  cannot be an 

infinite subset of K . 

 

Therefore, there is no infinite subset of K  such that (20) 

holds, so the proof is completed. 

Theorem 11 Suppose that conditions of Theorem 10 holds 

and kq  satisfies (5), then the Algorithm 1 either stops 

finitely or generates an infinite sequence { }kx  such that 

lim || || 0k
k

g
® ¥

= . 

Proof. The proof is similar to Theorem 3.4 in [6], we omit 

it for convenience. 

 

4.CONCLUSIONS AND FUTURE WORKS 

 

In this paper, we proposed a new non-monotone adaptive 

trust region method for unconstrained optimization 

problems. We analyzed the properties of the new algorithm 

and proved the global convergence theory under some mild 

conditions. When we investigate the nature of different 

non-monotone strategies, we think there are still some 

drawbacks if only the information of the maximum and the 

current iteration point be considered. In the near future, we 

will examine the effectiveness of different non-monotone 

strategies and design more proper ones. 
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