
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 407

SOFTWARE VULNERABILITY PREDICTION USING FEATURE SUBSET

SELECTION AND SUPPORT VECTOR MACHINE

*1 Mrs. Kavitha S., *2Ms. Shanthi C.,

*1Assisant Professor, Department of Computer Science Auxilium College (Autonomous),

 Vellore, TamilNadu, India
*2 M.Phil Research Scholar, Department of Computer Science Auxilium College (Autonomous),

Vellore, TamilNadu, India

---***---
Abstract:-To improve the performance of software

engineering processes and imperative to identify and

eliminate rework that could have been avoided. While

security or its absence is a property of running software

many aspects of software requirements, design,

implementation and testing contribute to the presence or

absence of security in the finished product. Software is

continues to function correctly under malicious attack.

Verification and validation (V&V) techniques like security

testing, code review and formal verification are becoming

effective means to reduce the number of post release

vulnerabilities in software products. The aim of reduce the

dimensionality, removing irrelevant data, increasing

learning accuracy and improving result comprehensibility.

The feature subset selection algorithm and support vector

machine as involves identifying a subset of the most useful

features that produces compatible results as the original

entire set of features. A feature subset selection algorithm

may be evaluated from both the efficiency and effectiveness

points of view. A feature subset selection algorithm is used

for software vulnerabilities such as verification and

validation. The support vector machines are supervised

learning models with associated learning algorithms that

analyze data and anomaly detection, predict the

vulnerabilities in software. The used for classification and

regression analysis to result.

Key Words: Quality of Software Product, Malicious

Attack, Measurement Feature, Testability, anomaly

Detection

I. INTRODUCTION

Software engineering is about the creation of

large pieces of software that consist of thousands of lines

of code and involve many person months of human effort.

One of the attractions of software engineering is that there

is no one single best method for doing it, but instead a

whole variety of different approaches. Consequently the

software engineer needs knowledge of many different

techniques and algorithm. This diversity is one of the

delights of software engineering and this by presenting

the range of current techniques and algorithm.cycle and

quality promise. Design-for-testability is a very important

issue in software engineering.

In traditional V&V the system provides the

context under which the software will be evaluated and

V&V activities occur during all phases of the system

development lifecycle. The transition to a product line

approach to development removes the individual system

as the context for evaluation and introduces activities that

are not directly related to a specific system. This

dissertation describes the extension of V&V from an

individual application system to a product line of systems

that are developed within an architecture-based software

engineering environment. This dissertation describes the

extension of V&V from an individual application system to

a product line of systems that are developed within an

architecture-based software engineering environment.

This seeks to ensure that the software is reliable. One of

the all-time greats of software engineering. A piece of

software that meets its specification is of limited use if it

crashes frequently. Verification is concerned with the

developers view the internal implementation of the

system. Two types of verification are unit testing and

system testing. In unit testing, each module of the

software is tested in isolation. The inputs to unit testing

are:

 1. The unit specification

 2. The unit code

 3. A list of expected test results.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 408

The products of unit testing are the test results.

Unit testing verifies that the behavior of the coding

conforms to its unit specification. In system testing or

integration testing, the modules are linked together and

the complete system tested. The inputs to system testing

are the system specification and the code for the complete

system. The outcome of system testing is the completed,

tested software, verifying that the system meets its

specification.

A single security problem can cause severe

damage to an organization by not only incurring large

costs late fixes but by losing invaluable assets and

credibility and leading to legal issues. Annual world-wide

losses caused from cyber attacks have been reported for.

The organizations must prioritize vulnerability detection

efforts and prevent vulnerabilities from being injected.

One way of identifying the most vulnerable code locations

is to use characteristics of the software product itself.

Perhaps complex code is more likely to be vulnerable than

simple code.

II. Related work
Many factors are believed to increase the

vulnerability of software system. The more widely

deployed or popular is a software system the more likely it

is to be attacked. Early identification of defects has been a

widely investigated topic in software engineering

research. Early identification of software vulnerabilities

can help mitigate these attacks to a large degree by

focusing better security verification efforts in these

components. Predicting vulnerabilities is complicated by

the fact that vulnerabilities are most often, few in number

and introduce significant bias by creating a sparse dataset

in the population.

To improve the security of software, we must

therefore not only look for general problem patterns but

also learn specific patterns that apply only to the software

at hand. In a investigation of the Mozilla vulnerability

history. We surprisingly found that components that had a

single vulnerability in the past were generally not likely to

have further vulnerabilities. However components that

had similar imports or function calls were likely to be

vulnerable. Based on this observation we were able to

extend Vulture by a simple predictor that correctly

predicts about half of all vulnerable components, and

about two thirds of all predictions are correct. This allows

developers and project managers to focus their efforts

where it is needed most “We should look at XPInstall

Manager because it is likely to contain yet unknown

vulnerabilities.”

2.1 General Over view

The mining of textual for many important

activities in software engineering tracing of requirements

retrieval of components from a repository location of

manage text for an area of question etc. Many such

activities leave the final word to the analyst have the

relevant items been retrieved. Other items that should

have been retrieved and analysts become a part of the text

mining process. The decisions on the relevance of

retrieved elements impact the final outcome of the

activity.

Text Mining

 In the field of Software Engineering as two

distinct and well-defined ways in text mining information

retrieval and machine learning methods are applied. The

first direction is the exploratory study of existing artifacts

of software development. The document hierarchies, code

repositories, bug report databases, etc., The purpose of

learning new “interesting” information about the

underlying patterns. Research of this sort is tolerant to the

varying accuracy of text mining methods. The certain

subtleties of some datasets might be missed the most

general are most likely be discovered in analysis.

Text Mining and Vulnerabilities

A few approaches are related to work as the text

mining techniques and treat all or parts of the source code

as text. However most work focuses on defect prediction

and not on vulnerability prediction the topic of work. Used

text features and spam filtering algorithms to predict

defects in software analyzed the source code of the

changes as text in order to build a predictor to determine

whether the introduced changes are buggy. The

determined that the use of K nearest neighbors (kNN)

technique results in a significant trade-off in terms of

precision.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 409

2.2 Machine Learning

Machine learning deals with the issue of how to

build programs that improve their performance at some

task through experience. Machine learning algorithms

have proven to be of great practical value in a variety of

application domains. Not surprisingly the field of software

engineering turns out to be a fertile ground where many

software development and maintenance tasks could be

formulated as learning problems and approached in terms

of learning algorithms. The deals with the subject of

applying machine learning methods to be engineering.

The first provide the characteristics and applicability of

some frequently utilized machine learning algorithms.

Then summarize and analyze the existing work and

discuss some general issues. Finally offer some guidelines

on applying machine learning methods to software

engineering tasks. Machine learning algorithms can out

how to perform important tasks by generalizing from

examples. This is of- ten feasible and cost-effective manual

programming is not. As more data becomes available,

more ambitious problems can be tackled.

Representation:

A classifier must be represented in some formal

language that the computer can handle. Conversely

choosing a representation for a learner is amount to

choosing the set of classifiers that it can possibly learn.

This set is called the hypothesis space of the learner. If a

classifier is not in the hypothesis space, it cannot be

learned.

Evaluation

An evaluation function (also called objective

function or scoring function) is needed to distinguish good

classifiers from bad ones. The evaluation function used

internally by the algorithm may differ from the external

one that we want the classifier to optimize for ease of

optimization (see below) and due to the issues discussed.

A method to search among the classifiers in the language

for the highest-scoring one. The choice of optimization

technique is key to the efficiency of the learner, and also

helps determine the classifier produced if the evaluation

function has more than one optimum. It is common for

new learners to start out using off-the-shelf optimizers are

later replaced by custom designed ones

III. PREVIOUS IMPLEMENTATIONS

 The identified all faults in the software based on

the failures that have surfaced during testing. Additionally

the customer reported failures do not complete the

identification of all non-security faults as predictors or all

security faults and failures as dependent variables.

Moreover the testing effort may not have been equal for all

components and thus components with fewer failures may

appear more reliable or secure. Therefore analyses are

based on incomplete data. The Type I (48%) and Type II

(43%) error rates are high indicating that the model is not

precise if applied at Cisco could lead to effort wasted on

low security risk components while some attack-prone

components are never found. Additional metrics in a

statistical model may help identify attack-prone

components with lower Type I and Type II error rates.

Furthermore there are few security data making statistical

analyses difficult. The model presented one industrial

software system and will not necessarily yield the same

results on different software systems.

 The starting point in study is the source code

(including comments) of a software application that

consists of a number of Java files. Each Java file is

tokenized into a vector of terms (text processing

terminology) and the frequency of each term in the file is

counted. The frequencies are not normalized to the length

of the file. This procedure has been attempted in early

experimentation and caused a deterioration of

performance. The routine used for tokenization uses a set

of delimiters that includes white spaces, Java punctuation

characters (such as comma and colon) and both

mathematical and logical operators. The routine is

implemented is available.

Listing 1. Source code in file HelloWorldApp.java

/* The HelloWorldApp class prints ’’Hello World!’’ */

class HelloWorldApp

 {

 Public static void main (String [] args)

 {

 System.out.println (’’Hello World!’’);

 }

}

 For instance Listing 1 would be tokenized and

transformed into the feature vector of Listing 2, where

each monogram is followed by a count. Listing 2. Feature

vector for file HelloWorldApp.java args: 1, class: 2, Hello:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 410

2, HelloWorldApp: 2, main: 1, out: 1, println: 1, prints:

1,public: 1, static: 1, String: 1, System: 1,The: 1, void: 1,

World: 2 From a computational perspective, creating the

feature vectors for one version of a large application took

an average of 40 seconds.

IV. SYSTEM IMPLEMETNATION

Many feature subset selection (FSS) algorithms

have been proposed but not all of them are appropriate for

a given feature selection problem. At the same time is

rarely a good way to choose appropriate FSS algorithms

for the problem at hand. FSS algorithm automatic

recommendation is very important and practically useful.

A meta learning based FSS algorithm automatic

recommendation method is presented. The proposed

method first identifies the data sets that are most similar

to the one at hand by the k-nearest neighbor classification

algorithm and the distances among these data sets are

calculated based on the commonly-used data set

characteristics. It ranks all the candidate FSS algorithms

according to their performance on these similar data sets

and chooses the algorithms with best performance as the

appropriate ones. The performance of the candidate FSS

algorithms is evaluated by a multi-criteria metric that

takes into account not only the classification accuracy over

the selected features but also the runtime of feature

selection and the number of selected features. The

proposed recommendation method is extensively tested

on 50 real world data sets with 22 well-known and

frequently-used different FSS algorithms for five

representative classifiers. The results show the

effectiveness of our proposed FSS algorithm

recommendation method.

Fig1.1: System Architecture

4.1 Feature Subset Selection

Feature subset selection (FSS) plays an important

role in the fields of data mining and machine learning. A

good FSS algorithm can effectively remove irrelevant and

redundant features and take into account feature

interaction. This not only leads up to an insight

understanding of the data but also improves the

performance of a learner by enhancing the generalization

capacity and the interpretability of the learning model

Although a large number of FSS algorithms have been

proposed. There is no single algorithm which performs

uniformly well on all feature selection problems.

Experiments have confirmed that there could exist

significant differences of performance (e.g., classification

accuracy) among different FSS algorithms over a given

data set. That means for a given data set some FSS

algorithms outperform others.

Assertion Density

The FSS algorithm recommendation method is

based on the relationship between the performance of FSS

algorithms and the meta-features of data sets. The

recommendation can be viewed as a data mining problem.

The performance of FSS algorithms and the meta-features

are the target function and the input variables

respectively. Due to the ubiquity of “Garbage In, Garbage

Out” (Lee, Lu, Ling, & Ko) in the field of data mining the

selection of the meta-features is crucial for our proposed

FSS recommendation method. The meta-features are

measures that are extracted from data sets and can be

used to uniformly characterize different data sets the

underlying properties are reflected. The meta-features

should be not only conveniently and efficiently calculated

but also related to the performance of machine learning

algorithms.

Meta-Knowledge Database Construction

The meta-knowledge database is constructed by

the following three steps. Firstly the meta-features are

extracted from each historical data set by the module

“Meta features extraction”. Then each candidate FSS

algorithm is applied on each historical data set. The

classification accuracy. The runtime of feature selection

and the number of selected features are recorded and the

corresponding value of the performance metric EARR is

calculated. This is accomplished by the module

“Performance metric calculation”. Finally for each data

set. The tuple is composed of the meta-features and the

values of the performance metric EARR for all the

candidate FSS algorithms is obtained and added into the

knowledge database.

4.2 FSS Algorithm Recommendation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 411

Based on the introduction of the first part “Meta-

knowledge Database Construction” presented the learning

target of the meta-knowledge data is a set of EARR values

instead of an appropriate FSS algorithm. It has been

demonstrated that the researchers usually resort to the

instance-based or k-NN (nearest neighbors) methods or

their variations for algorithm recommendation. The k-NN

based FSS algorithm recommendation procedure is

proposed. The recommending FSS algorithms for a new

data set firstly the meta-features of this data set are

extracted. The distance between the new data set and each

historical data set is calculated according to the meta-

features. The k nearest data sets are identified and the

EARR values of the candidate FSS algorithms on these k

data sets are retrieved from the meta-knowledge

database. Finally all the candidate FSS algorithms are

ranked according to these EARR values the algorithm with

the highest EARR achieves the top rank the one with the

second highest EARR gets second rank and so forth and

the top r algorithms are recommended.

4.3Support Vector Machine

Support vector machines (SVMs) method for

binary classification. Traditional training algorithms for

SVMs such as chunking and SMO scale super linearly with

the number of infeasible for large training sets. Since it

has been commonly observed that dataset sizes and

development of training algorithms. The survey work on

SVM training methods that target this large-scale learning

regime. Most of these algorithms use either (1) variants of

primal stochastic gradient descent (SGD) or (2) quadratic

programming in the dual. For (1) The discuss why SGD

generalizes well even though it is poor at optimization

and describe algorithms such as Pegasus and FOLOS that

extend basic SGD to quickly solve the SVM problem. For

(2) the survey recent methods such as dual coordinate-

descent and BMRM and proven competitive with the SGD

based solvers. the training set size increase and explain

SGD-based algorithms are able to satisfy.

4.4 Comparison of Machine Learning Technique

and Feature Subset Selection Algorithm

The performed a large scale studies by mining

more than 182 open source android applications to check

the most vulnerability. The focus on the first release of

each application show that it is possible to build a

classifier of good quality that predicts whether a file is

vulnerable using term frequencies. New projects can be

checked against these properties to detect anomalies. The

authors validated their approach based on a sample of 182

projects where 90 percent of the top-ranked anomalies

uncovered actual defects. The approach is based on bag of

words and achieves a mean accuracy of 89 percent mean,

recall of 89-90 percent, mean fall-out of 30-35 percent.

Table 1.1: Machine Learning Technique

Table 1.2: Feature Subset Selection Algorithm and

Support Vector Machine

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 412

EVALUATION RESULT:

As main contribution explores the value of a technique

backed by text mining and machine learning and applies

the technique to a relevant class of applications. The

ensuring a potentially high impact in case of success. The

approach presented here is applied to the problem of

predicting software vulnerabilities. Analyzed 20 “apps” for

the Android OS platform and followed their evolution over

time. The total analyzed 182 releases spanning. The above

-mentioned text mining technique in a series of three

experiments of increasing complexity. In the first

experiment the focus on the first release of each

application. The show that it is possible to build a classifier

of good quality that predicts whether a file is vulnerable

using term frequencies.

Fig.1.2: Comparison between value for machine

learning & feature subset selection algorithm

Fig.1.3 Value of Machine Learning and Feature Subset

Selection Algorithm

Fig.1.3:Comparison between Times for Machine

Learning Technique and Feature Subset Selection

Algorithm

Fig.1.4: Time of Machine Learning and Feature Subset

Selection Algorithm

CONCLUSION

The presented empirical evidence that features

correlate with vulnerabilities. Based on this empirical

evidence as have introduced vulnerable that predicts

vulnerable components by looking at their features. It is

fast and reasonably accurate. It analyzes a project as

complex as Mozilla in about half an hour and correctly

identifies half of the vulnerable components. Two thirds of

its predictions are correct. The contributions of the

present paper are as follows. A technique for mapping past

vulnerabilities by mining and combining vulnerability

databases with version archives. Empirical evidence that

contradicts popular wisdom saying that vulnerable

components will generally have more vulnerabilities in the

future. Evidence that features correlate with

vulnerabilities .A tool that learns from the locations of past

vulnerabilities to predict future ones with reasonable

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 413

accuracy. An approach for identifying vulnerabilities that

automatically adapts to specific projects and products. A

predictor for vulnerabilities that only needs a set of

suitable features and thus can be applied before the

component is fully implemented..

Future Work:

The empirically features are good predictors for

vulnerabilities. The believe that this is so because features

characterize a component’s domain. The type of service

that it uses or implements and it is really the domain that

determines a component’s vulnerability. The plan to test

this hypothesis by studies across multiple systems in

similar domains.

REFERENCES:

1. B. Smith and L. Williams, “Using SQL hotspots in a

prioritization heuristic for detecting all types of web

application vulnerabilities,” in Proc. IEEE Int. Conf. Softw.

Testing, Verification Validation, 2011.

2. A. Zeller, T. Zimmermann, and C. Bird, “Failure is a four-

letterword: A parody in empirical research,” in Proc. Int.

Conf. Predictive Models Softw. Eng., 2011.

3. Y. Shin, A. Meneely, L. Williams, and J. A. Osborne,

“Evaluating complexity, code churn, and developer activity

metrics as indicators of software vulnerabilities,” IEEE

Trans. Softw. Eng., Nov.–Dec. 2011.

4. S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller,

“Predicting vulnerable software components,” in Proc.

ACM Conf. Comput.Commun. Secur., 2007.

5. Ostrand, T.J., Weyuker, E.J., and Bell, R.M., "Predicting

the Location and Number of Faults in Large Software

Systems", IEEE Trans. Software Eng., 31(4), 2005.

6. Gegick, M., Rotella, P., and Williams, L., "Toward Non-

Security Failures as a Predictor of Security Faults and

Failures", in Proc. International Symposium on

Engineering Secure Software and Systems (ESSoS),

Leuven, Belgium, February 04-06, 2009.

7. Adrian Schr¨oter, Thomas Zimmermann, and Andreas

Zeller, “Predicting component Failures at Design Time,” In

Proc. 5th Int’l Symposium on Empirical Software

Engineering, New York, NY, USA, September 2006.

8. H. Hata, O. Mizuno, and T. Kikuno, “Fault-prone module

detection using large-scale text features based on spam

filtering,”Empirical Softw. Eng., 2010.

BIOGRAPHIES

Ms Shanthi. C., M.Phil

Research Scholar, Department

of Computer Science Auxilium

College (Autonomous), Vellore,

TamilNadu, India.

Mrs. Kavitha S., M.C.A.,

M.Phil., Assistant Professor

& HOD I/C, Department of

Computer Science Auxilium

College (Autonomous),

Vellore, TamilNadu, India.

