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Abstract: A review is presented for the analysis of heat 

transfer and fluid flow problems in engineering and science, 

with the use of different meshfree methods. The success of 

the meshfree methods lay in the local nature, as well as 

higher order continuity, of the trial function approximations 

and a low cost to prepare input data for numerical analyses, 

since the creation of a finite element mesh is not required. 

There is a broad variety of meshless methods available 

today; however the focus is placed on the meshless local 

Petrov- Galerkin (MLPG) method, in this paper. 
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1. INTRODUCTION 

There are numbers of well known conventional numerical 
methods (Finite Element Method, Finite Volume Method 
and Finite Difference Method) but Finite Element Method 
(FEM), because of its versatility and flexibility is 
extensively used as an analysis tool in various engineering 
applications. However, on the other hand FEM suffers 
from drawbacks such as locking problem, element 

distortion, loss in accuracy and the need for remeshing. 
The root of these problems is the use of mesh in the 
formulation stage. The idea of getting rid of the meshes in 
the process of numerical treatments has naturally evolved 
and the concepts of meshfree methods have been shaped 
up. Meshfree methods use a set of nodes scattered within 
the problem domain. Many meshfree methods have been 
achieved remarkable progress over the past years in the 
areas of engineering such as solid mechanics, deformation 
problems, structural analysis, heat transfer and fluid flow 
analysis etc. Some of these are the element free Galerkin 
(EFG) method (Belytschko et al., 1994); the radial point 
interpolation method (RPIM) [GR Liu and Gu, 2001; Wang 
and GR Liu, 2000; 2002]; reproducing kernel particle 
method (RKPM) [Liu and co- workers in 1995]; general 
finite difference method (GFDM) [Girault, 1974; Pavlin and 

Perrone, 1975; Snell et al., 1981; Liszka and Orkisz, 1977; 
1980; Krok and Orkisz, 1989]; meshfree collection 
methods [Kansa, 1990; Wu, 1992; Zhang and Song et al., 
2000; Liu X et al., 2002; 2003]; the finite point method 
(FPM) [Onate et al., 1996; 1998; 2001]; meshfree weak- 
strong (MWS) form methods [Liu and Gu, 2002; 2003]; 
meshfree local Petrov- Galerkin (MLPG) method [Atluri 
and Zhu, 1998]; smooth particle hydrodynamic (SPH) 
method [Lucy, 1977; Gingold and Monaghan, 1977; GR Liu 
and Liu, 2003]; the point interpolation method (PIM) [Liu 
and Gu, 2001];  hp- cloud method [Durarte and Odenm, 
1996], the partition of unity (PU) method [Melenk and 
Babuska, 1996; Babuska and Melenk, 1997]; the boundary 
node method (BNM) [Mukherjee and Mukherjee, 1997; 
Kothnur et al., 1999] and the local boundary integral 
equation (LBIE) method [Zhu et al., 1998a, 1998b; Sladek 
et al., 2002] etc.  
This paper aims to highlight the applications of different 
meshfree methods, first in the areas of heat transfer and 
then the fluid flow. Also an attempt has been made to 
highlight the superiority of MLPG method over other in the 
mentioned areas.  

2. MESHFREE METHODS IN HEAT TRANSFER 
APPLICATIONS 

Apart from different applications meshfree methods can 
be applied to heat transfer problems in the manner as 
mentioned in the under sections: 

2.1 Smooth Particle Hydrodynamics (SPH) method 

Zhang and Batra (2004) have applied meshless SPH 
method to investigate 2D heat conduction problem and 
found SPH to be more accurate than classical FDM. Das 
and Cleary (2007) have applied SPH method to investigate 
thermal response in welding pool. The results obtained by 
SPH are found to be in good agreement with the 
established FEM and FVM respectively. Hou and Fan 
(2012) have applied modified SPH method to 1D and 2D 
transient heat conduction problems and found that the 
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proposed method demonstrates the better accuracy than 
the conventional one. Szewc and Pozorski (2013) have 
employed novel SPH method, based on Hu and Adams 
(2006) formalism, for multiphase heat transfer modeling 
and found that the novel approach is more accurate than 
the standard SPH formulation. 

2.2 Reproducing Kernel Particle Method (RKPM) 

Rong-Jun and Hong-Xia (2010) have applied meshfree 
RKPM to complex 3D steady-state heat conduction 
problems. The results obtained are compared with the 
exact solutions and found to be accurate and efficient. Xie 
and Wang (2014) have analyzed the coupled hydro-
mechanical system with the help of meshfree RKPM. Very 
promising results have been demonstrated by the stated 
method. 

2.3 Element Free Galerkin (EFG) Method  

Singh and Tanaka (2006) have applied the meshless EFG 
method to obtain thermal solution of cylindrical composite 
system and found that the EFG results obtained using 
different weight functions are in good agreement with 
classical FEM. Sharma et al. (2012) have examined the 
unsteady magneto-hydrodynamic (MHD) convection heat 
transfer of viscous fluid over an unsteady stretching sheet 
placed in a porous medium by EFGM. The results obtained 
by the proposed method have been found to be excellent. 
Brar and Kumar (2012) have solved a 1D heat conduction 
problem with uniform heat generation by EFGM. The 
results obtained by EFG method have been compared with 
FEM results and observed that the results obtained by 
proposed method are as accurate as analytical or FEM 
results. Das et al. (2012) have employed EFGM to analyse 
3D transient heat conduction during a welding process 
and found that the results obtained by EFGM agrees 
closely with FE solutions and experimental results. Zan et 
al. (2013) have applied IEFG (improved EFG) method 
(combination of improved MLS and EFGM) to 3D transient 
heat conduction problems. Comparison of the results 
demonstrates that the IEFG method is more efficient than 
the conventional one. Zhao and Hongping (2014) have 
applied an interpolating EFGM (based on interpolating 
moving least-squares scheme) to the 2D transient heat 
conduction problems. They have explored that 
interpolating EFGM gives better computational efficiency 
and accuracy than conventional EFG. 

2.4 Radial Point Interpolation Method (RPIM) 

Chen et al. (2010) have applied RPIM to solve 2D steady-
state temperature field problems and found that RPIM is 
more advanced than the EFGM. On contrary, in the 
methods based on local weak-form formulation, no 
background cells are required and therefore they are often 
referred to as truly meshless methods and local radial 
point interpolation method (LRPIM) is among one of them. 

Sarabadan et al. (2014) have applied LRPI method to solve 
time dependent Maxwell’s equation. After solving the 
example problem it can be demonstrated that the present 
approach leads to acceptable results in comparison with 
classical FDM. 

2.5 Finite Point Method (FPM) 

Lei et al. (2004) have applied the FPM to simulate the heat 
transfer and solidification in a continuous casting mold. It 
has been divulge by the authors that the FPM is a 
convenient method that can be used to accurately analyze 
moving boundary problems. Revealing the features of 
FPM, Onate et al. (1996) have employed the said method 
to solve convection-diffusion problems. The results 
obtained are compared with the well established FEM and 
found to be in good agreement with it.  

2.6 Boundary Knot Method (BKM) 

Chen (2001) has solved 2D inhomogeneous Helmholtz 
problems both by BKM and boundary point method 
(BPM). The experimental results show that both BKM and 
BPM produce very accurate solutions with a small number 
of nodes for inhomogeneous Helmholtz problems. 
Revealing the features of BKM, Hon and Chen (2002) have 
applied this method to solve 2D and 3D Helmholtz and 
convection-diffusion problems under complicated 
irregular geometry. Numerical experiments validated that 
the BKM can produce highly accurate solutions using only 
a small number of nodes. The completeness, stability and 
convergence of the BKM has also been established 
numerically. Chen et al. (2005) have further employed 
BKM to examine high-order general solutions of the 
Helmholtz and modified Helmholtz equations. They 
explored that while comparing with the BEM, the 
proposed method has higher accuracy and low 
computational cost. Wang et al. (2009) have highlighted 
the approach to overcome the numerical instability 
induced from highly dense and ill-conditioned BKM 
interpolation matrix. For this purpose they have 
considered three regularization methods and two 
approaches for the determination of the regularization 
parameter. They found that the regularization technique is 
excellent for solving inverse problems with noisy 
boundary conditions. Fu et al. (2011) have applied the 
BKM to analyse 2D nonlinear heat conduction problem of 
FGMs. Numerical demonstrations have shown that the 
proposed BKM is mathematically simple, easy-to-program, 
meshless, high accurate and integration-free. Fu et al. 
(2012) have further investigated steady-state and 
transient heat conduction problems in nonlinear FGMs by 
using three boundary meshless methods [the method of 
fundamental solution (MFS), the boundary knot method 
(BKM) and the collocation Trefftz method (CTM)] in 
conjunction with Kirchhoff transformation and various 
variable transformations. It is found that the CTM 
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performs best among these three methods but the BKM 
converges much faster than the MFS.  
However, numerical solutions of the BKM always perform 
oscillatory convergence when using a large number of 
boundary points in solving the Helmholtz-type problems. 
The main reason for this phenomenon may contribute to 
the severely ill-conditioned full coefficient matrix. In order 
to obtain admissible stable convergence results Wang and 
Zheng (2014) have employed three regularization 
techniques and two algorithms in the process of 3D 
Helmholtz-type simulation problems. It is found that the 
BKM in combination with the regularization techniques is 
able to produce stable numerical solutions.  

2.7 Singular Boundary Method (SBM) 

A class of singular boundary value problems modeling the 
heat conduction in the human head has been studied by 
Morgado and Lima (2009). Numerical results have been 
presented and suggested that second order convergence 
can be obtained even in this case, by introducing a variable 
substitution which makes the solution smooth near the 
origin. Htike et al. (2011) have investigated the 
applications of the SBM to solve 2D problems of steady-
state heat conduction in isotropic bi-materials. Numerical 
investigations indicate that the proposed SBM technique 
agrees pretty well with the BEM in terms of efficiency and 
accuracy. Gu et al. (2012) have extended SBM to solve 2D 
and 3D heat conduction problems in anisotropic materials 
with arbitrary domains. They found that the SBM is 
computationally efficient, robust, accurate, stable and 
convergent with respect to increasing the number of 
boundary nodes.  

2.8 Local Boundary Integral Equation (LBIE) Method 

Sladek et al. (2002) have used LBIE method to 
approximate the thermostatic problems and found that 
the present method possesses a tremendous potential for 
solving nonlinear and nonhomogeneous problems. Sladek 
et al. (2003) have further analyzed transient heat 
conduction in FGM by LBIE method and found the stated 
method to be in good agreement with the classical 
methods. Sladek et al. (2004) have also analyzed heat 
conduction in nonhomogeneous solids by LBIE. Result 
demonstrates the high accuracy of proposed method.  

2.9 Meshless Local Petrov- Galerkin (MLPG) method  

Atluri and Zhu (1998) have applied MLPG method to solve 
2D heat conduction problems and found the proposed 
method to be in good agreement with classical FEM. 2D 
steady and transient heat transfer problems in 
nonhomogeneous body with anisotropic material property 
has been analyzed by Sladek et al. (2004), using MLPG 
approach. They found that the accuracy and adaptability of 
the present method is higher than the classical FEM. 3D 
transient heat conduction in functionally graded (FG) thick 

plate has been analyzed by Qian and Batra (2005) by 
MLPG method. The results found to be in good agreement 
with the classical methods. XueHong et al. (2008) have 
applied MLPG method to analyse the linear 2D steady state 
heat conduction problems. Numerical results 
demonstrated the high accuracy of the method and found 
to be in good agreement with the results of classical FVM. 
MLPG method has also been extended to transient 3D heat 
conduction problems in continuously nonhomogeneous 
solids (Sladek et al., 2008a). The stated method seems to 
be more promising for the problems, which cannot be 
solved by conventional BEM due to unavailable 
fundamental solution. In addition to this Sladek et al. 
(2008b) have analyzed 3D transient and linear heat 
conduction equation in continuously non- homogeneous 
anisotropic functionally graded material (FGM). Results 
obtained by MLPG method have been found to be in good 
agreement with classical FEM and BEM. Baradaran and 
Mahmoodabadi (2009) have applied MLPG method to 
solve 2D steady state heat conduction problems. They 
have found MLPG to be in good agreement with the 
analytical solution in terms of convergence rate, accuracy 
and efficiency. Fereidoon and Saeidi (2009) have analyzed 
2D steady state heat transfer analysis in FGM and Non- 
FGM as well by using MLPG method. They found that the 
results obtained are in good agreement with that of 
classical FEM. Thakur et al. (2010) have solved 1D solid- 
liquid phase change (originally solved by Voller, 1987) and 
nonhomogeneous heat conduction in FGM by MLPG 
method. The results obtained by MLPG method have been 
found to be in good agreement with classical FEM. 
Baradaran and Mahmoodabadi (2011) have analyzed 2D 
heat conduction problems under steady state conditions 
by MLPG method. A discrete parametric study has been 
conducted and found that MLPG shows high convergence, 
accuracy and efficiency with respect to the exact solution. 
Mahmoodabadi (2011) have also solved 3D heat 
conduction problems under steady state conditions by 
MLPG method. It is found that MLPG is more 
computationally efficient as compare to classical FDM. 
Shibahara and Atluri (2011) have investigated a transient 
2D heat conduction problem due to moving heat source by 
MLPG method and found that the proposed MLPG 
approach provides sufficiently high accuracy. Techapirom 
and Luadsong (2013) have applied MLPG method to solve 
2D transient heat conduction equations with non- local 
boundary conditions. The efficiency, accuracy and 
effectiveness of the method are reported to be 
significantly good. Dai et al. (2013) have applied improved 
MLPG method to 2D transient heat conduction problems 
and found that the test problems are in good agreement 
with that of FEM. Qi-Fang et al. (2013) have presented 
complex variable meshless local Petrov- Galerkin 
(CVMLPG) method based on complex variable moving 
least square (CVMLS) approximation to solve 2D transient 
heat conduction problems. Results obtained are found to 
be in good agreement with conventional MLPG method. 
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Zhang et al. (2014) have used MLPG mixed collocation 
method to solve Cauchy inverse problems of nonlinear 2D 
steady- state heat transfer. It is found that the present 
method is simple, accurate, stable and hence suitable to 
solve inverse heat transfer problems. 

3. MESHFREE METHODS IN FLUID FLOW 
APPLICATIONS 

Apart from different applications meshfree methods can 
be applied to fluid flow problems in the manner as 
mentioned in the under sections: 

3.1 Smooth Particle Hydrodynamics (SPH) method  

Holmes et al. (2000) have analyzed the fluid flow in 2D 
and 3D porous media with the help of SPH method. 
Simulation results for friction coefficient and permeability 
are shown to agree well with the available benchmarks. 
Chaniotis et al. (2002) have employed the high order 
remeshing scheme to the classical SPH method and solved 
the low Mach number compressible viscous conductive 
flow problems. It has been found that the proposed 
methodology is in good agreement with the established 
methods. Also, the accuracy of the method comes with a 
minimal additional computational cost. Muller et al. 
(2003) have proposed an interactive method based on 
SPH to simulate fluids with free surfaces. The authors have 
found the promising results by this method. Monaghan et 
al. (2005) have shown that how SPH method can be used 
to simulate the freezing of one and two-component 
(binary alloy) systems. The method found simple to be 
used. More over the results are found to be in good 
agreement with the available exact solution. Jafary and 
Khandekar (2011) have simulated the fluid droplets by 
using SPH technique and found that the SPH simulations 
are in excellent agreement with the experimental data. 
Noutcheuwa and Owens (2012) have developed a truly 
incompressible SPH method and applied it to discretize 
incompressible N-S equations in time and found that the 
improved version of SPH is in very good agreement with 
both exact solutions. Zou and Jing (2013) have simulated 
the fluid flow in single as well as intersected rock fractures 
by solving the N-S equations by using SPH method. The 
results show that SPH models are effective and have 
acceptable accuracy with the benchmarked tests. Terissa 
et al. (2013) have provided a basic method of SPH to 
simulate liquid droplet with surface tension in 3D. The 
result show that the droplet tries to keep its shape of a 
sphere as expected. Hou et al. (2014) have solved the 
problem of flow separation at bends with various leg 
ratios and turning angles by the SPH particle method. It 
has been revealed that the proposed SPH solver appears to 
be a powerful tool to deal with flow separation problems 
in channels. 

3.2 Reproducing Kernel Particle method (RKPM) 

Xai and Wang (2014) have developed a novel iterative 
coupling scheme to solve coupled hydro-mechanical 
problems by using RKPM. The accuracy and convergence 
of the proposed numerical scheme are demonstrated 
through extensive parametric studies of 1D and 2D 
consolidation and showing its great promise for use in 
solving practical problems. 

3.3 Element Free Galerkin (EFG) method  

Vidal and Huerta (2003) have proposed a novel mesh-free 
approach, so called Pseudo Divergence-Free EFG (PDF 
EFG) obtained by modifying only the interpolating 
polynomials of standard EFG for incompressible flow 
which is based on defining a Pseudo Divergence-Free 
interpolation space. The accuracy of PDF EFG is found to 
be better than the standard EFG. Singh (2004) has 
examined 2D transient and steady state fluid flow 
problems by using meshless EFG method. It is found that 
the EFG results are well converged and in good agreement 
with FE and exact methods. Fries and Metthies (2004) 
have applied a novel method (combination of meshfree 
EFG and classical FEM) to solve 2D incompressible N-S 
equations. They concluded that coupled FEM/EFG 
approximation is a very promising tool for the simulation 
of complex flow problems. Vlastelica et al. (2008) have 
explored the applicability of EFG method to model 
incompressible fluid flow. They concluded that an 
increased number of free points per cell with increased 
number of integration points lead to more accurate 
results. Bhargava and Singh (2012) have investigated 
unsteady MHD (magneto-hydrodynamic) flow and heat 
transfer of a non-Newtonian second grade viscoelastic 
fluid over an oscillatory stretching sheet. It has been found 
that the effect of viscoelastic parameter is to increase the 
velocity distribution and that of magnetic parameter to 
decrease the velocity distribution while temperature 
increases with the increased magnetic parameter. 

3.4 Radial Point Interpolation Method (RPIM) 

Liu et al. (2003) have adopted a novel iterative coupling 
scheme for solving coupled hydro-mechanical problems 
by using RPIM. The accuracy and convergence of the 
proposed numerical scheme are demonstrated through 
extensive parametric studies of 1D and 2D consolidation 
simulations. The results are found to be in good agreement 
with the classical methods. 

3.5 Finite Point Method (FPM) 

Onate et al. (1996) have used FPM for solving 1D and 2D 
convection- diffusion and fluid flow type problems. 
Excellent results have been obtained in all cases. Lohner et 
al. (1999) have applied a weighted least squares FPM to 
study compressible flow problems. The results obtained 
show accuracy comparable to equivalent mesh-based FVM 
or FEM and makes the proposed FPM competitive. Fang 
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and Parriaux (2008) have presented FPM for the 
numerical simulation of incompressible viscous flows. The 
results demonstrate that the proposed method is able to 
perform accurate and stable simulations of incompressible 
viscous flows. 

3.6 Singular Boundary Method (SBM) 

Qu and Chen (2014) have applied the SBM to analyse 2D 
Stokes flow problems. The numerical solutions obtained 
with the proposed method agree well with the exact 
solutions also the numerical results exhibit a stable 
convergence trend in all tested examples.  

3.7 Boundary Element Method (BEM) 

Grilli et al. (1989) has presented a computational model 
for highly nonlinear 2D water waves with the help of BEM. 
Problems of wave generation and absorption are 
investigated. The results found to be accurate with respect 
to the existing data. Kikani (1989) has used BEM to 
analyse streamline generation in odd shaped reservoirs 
with multiple walls. Pressure and pressure derivative 
behavior is also studied. Numerical features of BEM such 
as accuracy, consistency and the optimum number of 
nodal points are investigated. The results are found to be 
in good agreement with the classical methods.  Sueyoshi et 
al. (2007) have investigated the applicability of particle 
methods to various practical problems. The results are 
found to be accurate and in good agreement with the 
existing solutions. Gu and Wang (2008) have proposed a 
coupled numerical approach to assess the nonlinear 
dynamic responses of near-bed submarine pipeline by 
combining the meshless technique and the BEM. It has 
been demonstrated that the present approach is very 
effective to obtain numerical solutions for the stated 

problem. 

3.8 Local Boundary Integral Equation (LBIE) Method 

Pavlova et al. (2010) have applied the LBIE method for the 
solution of 2D incompressible fluid flow problems 
governed by the N-S equations. Numerical examples 
illustrate the proposed methodology and demonstrate its 
accuracy. 

3.9 Meshless Local Petrov- Galerkin (MLPG) method  

Lin and Atluri (2000) have solved 1D and 2D steady state 
convection-diffusion problems. The presence of 
convection term causes serious numerical difficulties, such 
as oscillatory solution, which can be solved by upwinding. 
It is found that the proposed method is computationally 
efficient and cost effective. The study has been further 
extended to solve steady-state 1D incompressible N-S 
equation using MLPG method (Lin and Atluri, 2001). The 
numerical results have shown that MLPG method with 
upwinding schemes gives better performance at low cost 

for high Reynolds number flows than MLPG method 
without upwinding. Arefmanesh et al. (2007) have studied 
steady, non- isothermal fluid flow problem by using MLPG 
method. The results found to in close agreement with 
classical numerical methods. Avila and Atluri (2009) have 
applied MLPG method to solve non-study 2D 
incompressible N-S equation for different flow field 
calculations. It has been found that MLPG method can be 
used to solve a variety of fluid flow problems where 
certain surfaces in the flow domain are in arbitrary 
motion. 2D steady state Stokes equation, for elliptical 
shaped domain has been solved by using novel MLPG- 
Mixed FE approach (Avila et al., 2011). It is found that the 
results provided by the novel mixed method for the stated 
problem is excellent. Arefmanesh and Tavakoli (2012) 
have used MLPG method in investigating the effect of 
Rayleigh number and the volume fraction of the different 
nano-particles (Al2O3-water, cu-water, TiO2-water) on the 
characteristics of the natural convection inside the 
investigated control volume. Investigations show that the 
average Nusselt number (Nu), in general increases with 
increasing the volume fraction of the nano-particles for 
the different considered nano-fluids. Satapharm and 
Luadsong (2013) have applied MLPG method to simulate 
unsteady incompressible fluid flow problems. It has been 
found that LSWF with classical Gaussian weight order two 
gives comparatively accurate results than the improved 
Gaussian weight. 

4. CRITICAL ANALYSIS OF MESHFREE METHODS  

The peer study of meshfree methods have proved their 
worth in solving complex engineering problems, still some 
of them has certain shortcomings that they use 
background cells to integrate a weak form over the 
problem domain or boundary, which may distort during 
large deformations. LBIE and MLPG methods are 
exceptional because these methods do not require the 
background cells for the interpolation of the trial and test 
functions for the solution variables. All pertinent integrals 
can be easily evaluated over over-lapping or regularly 
shaped domains and their boundaries. In fact, the LBIE 
approach can be treated simply as a special case of the 
MLPG approach (Atluri, Kim & Cho, 1999), hence MLPG is 
found left to be the only exceptional truly meshfree 
method which has been so designed to overcome these 
shortcomings and hence can be a point of attraction for 
the researchers. Also, it demonstrates flexibility to 
formulate all weak forms locally; choose various trial and 
test functions and combined them together for solving one 
problem. Overlapping local sub-domains provides 
accessibility of complicated structures. All these factors 
can motivate the researchers to take MLPG as an analytical 
tool, in the further carried research activities. 
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5. MLPG APPROACH 

MLPG method operates on Petrov-Galerkin formulation i.e. 
it picks up test and trial functions from different function 
spaces. The original formulation of Atluri and Zhu (1998a, 
1998b) has subsequently evolved in various versions 
either by changing the meshfree approximation scheme or 
by selecting a new test function. Hence, the MLPG method 
provides a rational basis for constructing meshfree 
methods with a greater degree of flexibility. It is hereby 
provided an overview of various aspects of MLPG 
formulation and relevant numerical algorithms. 

5.1 Moving least square (MLS) interpolation scheme 

There are lot of local interpolation schemes, such as MLS, 
PUM, RKPM, hp- clouds and shepard function etc. 
However, moving least square (MLS) method is generally 
considered as one of the schemes to interpolate the data 
with a reasonable accuracy. Therefore MLS scheme is 
presented in the current work. 
Consider an arbitrary point of interest x located in the 
problem domain. The moving least squares approximant 
uh(x) of u(x) is given as                      

( ) ( ) ( ) ( ) ( )
1

mh T
u p aj j

j
 


x x x p x a x    (1) 

Where pT(x) = (p1 (x), p2 (x),……, pm (x)) is a complete 
monomial basis and m is the number of terms in the basis. 
For example, in 2D space the basis can be chosen as  
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The coefficient vector a(x) is determined by minimizing a 
weighted discrete L2 norm defined as  
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Where w(x, xi) is a weight function, u(xi) = ui is the nodal 
parameter of the field variable at node xi and n is the 
number of nodes in the support domain of x for which the 

weight function, ( , ) 0w x xi  .   

The stationarity of J with respect to a(x) results in the 
following linear system: 
A(x)a(x) = B(x)u     (4) 

The above equation can be written as 
1

( )


a x A (x)B(x)u

   (5)                                          
Where matrices A, B and u are defined as 

( , )
1

n
w i

i
 



T
A(x) x x p(x )p (x )

i i
    (6)  

[ ( , ) , ( , ) , .......,
1 1 2 2

( , ) ]

w w

w n n

B(x) x x p(x ) x x p(x )

x x p(x )
  (7) 

[ , , ... ]
1 2

T
u u unu                                      (8) 

System of equations (5) for a(x) is solvable if A is a 
nonsingular matrix. The requirement of the non-
singularity of A is n > m. Hence, the support domain of 
point x must cover number of nodes which is higher than 
the number of terms in the monomial basis. Substituting 
Eq. (5) in Eq. (1), the MLS approximant is obtained as 

( )
1

nh
u ui i

i
  


x Φ(x)u               (9) 

Where meshless shape function i(x) is defined as  

 1
( ) ( )

1

m
pi j jij


  


x x A (x)B(x)      (10) 

The partial derivatives of i (x) are obtained as  

1
( ) [ ( )

, ,1

1 1
( ) ]

, ,

m
p jii k j kj

p j jik k


  



 
 

x A B

A B A B

          (11) 

in which  ,k  denotes   / x
k

   and 
1

,k


A  represents 

the derivative of the inverse of A given by 
1 1 1

, ,k k
  

 A A A A
 

    (12) 

 

Figure 1: The approximate function uh(x) and fictitious nodal 

parameters ui (refer Thakur et al., 2010) 

In implementing the MLS approximation for present 
LSWF, the basis functions and weight functions should be 
chosen at first. Fourth order spline function is considered 
in the present work. It can be expressed as 

2 3 4
1 6 8 3 if  0 1

( , )
0 if  1

d d d d
w

d

    








x xi  (13) 
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Where d  x - x
i

, is the distance from node xi to point 

x. 

6. FURTHER RESEARCH PERSPECTIVE  

Referring above sections it can be found that MLPG has 
been used in variety of heat transfer and fluid flow 
applications. Still some areas are left unexplored as: 
 Heat transfer enhancement or further improvement in 

the existing system.  
 The surface structure of most of the experimental 

setups is large enough. It declines the intensity of heat 
transfer from its originated point to the end point. 
This phenomenon should also be taken into 
consideration.  

 Fluid flow problems can be investigated for variable 
channel flows and variable obstacle structures. 

7. CONCLUDING REMARK 

In this paper, an effort has been made to present different 
meshfree methods and their applications in the field of 
heat transfer and fluid flow and also highlight the features 
and applications of meshless local Petrov-Galerkin (MLPG) 
method, as it is an only truly meshless method and 
provides the flexibility in choosing the trial and test 
functions as well as the size and shape of local sub-
domains. Therefore, MLPG is characterized as more 
flexible and capable to handle in easier way the problems 
from which the conventional mesh-based methods suffer. 
Some unexplored areas in the field of heat transfer and 
fluid flow have been exposed for the purpose that these 
should be treated by the researchers in their further 
research activities. 
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