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Abstract - A one-dimensional problem for a 

homogeneous isotropic thermoelastic infinite medium 

subjected to a periodically varying heat sources on 

the boundary of the space is considered in the context of 

Lord  & Shulaman model of linear theory of generalized 

thermoelasticity. The Laplace transform together with 

an eigenvalue approach technique is used to find the 

solutions for the field variables in transformed domain. 

The transformed solutions are inverted using the 

Zakian algorithm. Numerical results for the 

temperature, displacement and stress distributions are 

presented graphically and analyzed. 
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1. INTRODUCTION 
Biot [1] introduced the theory of coupled thermoelasticity 
(CTE) to overcome the first shortcoming in the classical 
uncoupled theory of thermoelasticity where it predicts 
two phenomena not compatible with physical 
observations. First, the equation of heat conduction of this 
theory does not contain any elastic terms. Second, the heat 
equation is of a parabolic type, predicting infinite speeds 
of propagation for heat waves. The governing equations 
for Biot theory are coupled, eliminating the first paradox 
of the classical theory. However, both theories share the 
second shortcoming since the heat equation for the 
coupled theory is also parabolic.  
          
Lord & Shulman [2] (LS model) attempt to eliminate the 

paradox of infinite velocity of thermal disturbances 

inherent in CTE theory [1]. This model is based on a 

modified Fourier’s law of heat conduction but in addition a 

single relaxation time was considered. This theory was 

extended by Dhaliwal & Sherief [3] to include the 

anisotropic case. In LS model, the thermal signal 

propagates with finite speed. The heat conduction 

equation in this model is of hyperbolic type and is closely 

connected with the theories of second sound. 

 Saleh [4] have studied a one-dimensional problem in 

generalized thermoelasticity subjected to a heat sources. 

Youssef [5] studied a two-temperature generalized 

thermoelastic medium subjected to a moving heat source 

and ramp-type heating by state-space approach. Youssef 

[6] also studied generalized thermoelastic infinite medium 

with cylindrical cavity subjected to moving heat source. 

Othman et al. [7] studied transient disturbance in a half-

space under generalized magneto-thermoelasticity with 

internal heat source.  

 

In the present research, we consider a one-dimensional 

problem for a thermoelastic infinite medium in the context 

of LS model of generalized thermoelasticity subjected to a 

periodically varying heat sources. The Laplace transform 

together with an eigenvalue approach [8, 9, 10] technique 

is used to find the solutions for the field variables in 

transformed domain. The transformed solutions are 

inverted using the Zakian algorithm [11]. Numerical 

results for the temperature, displacement and stress 

distributions are presented graphically and analyzed. 

2. BASIC EQUATIONS AND FORMULATION OF THE 
PROBLEM 

Following Lord & Shulman [2], the governing equations 
for a homogeneous isotropic thermoelastic material can be 
written in the following form: 
 
The constitutive equations are: 

0 0 ,
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Fourier’s law in the theory of generalized fractional heat 
conduction is taken from [25] as:   
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The energy equation in the presence of heat sources has 
the form:                                                        

0 , , (4)i iT q Q      

The equations of motion in the absence of body forces: 

, , (5)ij j iu    

 
where 

ij are the components of the stress tensor, 
ije  are 

the components of strain tensor,   is the density,   is the 

entropy per unit mass, 
iq are the components of heat flux 

vector, k  is the coefficient of thermal conductivity, 

0 ,T T T   is the absolute temperature, 
0T  is the 

temperature of the medium in its natural state assumed to 
be such that 

0| / | 1T  , l  is the extrinsic equilibrated 

force, ,   are Lame’s constants, (3 2 ) t     , 
t  is the 

coefficient of linear thermal expansion, 
ij is the Kronecker 

delta, 
iu are the components of the displacement vector, 

EC  is the specific heat at constant strain, 
0  is the  

relaxation time parameters, Q  is the intensity of the 

applied heat sources. A superposed dot represents 
differentiation with respect to time variable t , and a 

comma followed by a suffix denotes material derivative 
and , , ,i j x y z referee to a general coordinates. 

 
For a homogeneous isotropic generalized thermoelastic 

infinite medium, the governing field equations in terms of 

the displacement and the temperature field subjected to a 

moving heat sources in the absence of body forces can be 

obtained from Eqs. (1)-(5) as follows: 
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The homogeneous isotropic infinite porous thermoelastic 

solid body is unstrained and unstressed initially but has a 

uniform temperature distribution
0T . Let 0x  represents 

the plane area over which the applied heat sources Q  is 

situated and the solid occupies the half-space x    . 

Due to the symmetry of the problem, all the field 

quantities depend only on x  and t  and thus for one-

dimensional case, the displacement vector 
iu  will have the 

components
1 2 3( , ), 0, 0u u x t u u   . Thus from Eqs. (6)-

(8) we can write: 
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To transform Eqs. (18)-(21) in non-dimensional forms we 
will use the following non-dimensional variables 
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After using these non-dimensional variables, Eqs. (9)-(12) 
take the following forms (omitting the primes for 
convenience): 
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where 
2

0

( 2 )E

T

C




  



 is the thermoelatsic coupling 

parameter. 

For periodically varying heat sources distributed over the 
plane area x = 0 we may represent it as 
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where 
0Q  is a constant and ( )x  is the Dirac’s delta 

function defined by: 
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3. SOLUTION IN THE LAPLACE TRANSFORM 
DOMAIN: EIGENVALUE APPROACH 

Taking the Laplace transform of parameter s defined by 
 

 
0

( , ) : ( , ) ( , ), Re( ) 0 (16)stL f x t e f x t dt f x s s


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on both sides of the Eqs. (13)-(15) (assuming the 
homogeneous initial conditions) we get 
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Following Das et al. [8, 9], Eqs. (17)-(18) can be written in 
a vector-matrix differential equation as follows: 
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Using the solution methodology through eigenvalue 
approach discussed in Das et al. [10] the solutions for 

( . )and ( , )x s u x s bounded as x  in the Laplace 

transform domain can be obtained as: 
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where 2 2 2 2

1 2 31 42 34 43 1 2 31 42andk k C C C C k k C C     . 

 
The stress component ( , )xx x s  can now be determined 

using the Eqs. (21)-(22) in the Eq. (19). Solution (21) and 
(22) determine completely the state of the solid for 0x  . 

The solution for the whole space (when the space 0x  is 

also included) is obtained from Eqs. (21)- (22) By taking 
the symmetries under consideration, see [11] for details.  
 

4. NUMERICAL RESULTS AND DISSCUSSIONS 

To illustrate and compare the theoretical results obtained 

in Section 3, We apply Zakian algorithm [11] to present 

some numerical results which depict the variations of the 

temperature, the displacement and the stress component 

in the time domain. As a numerical example we considered 

copper material which has wide applications in industry. 

The material constants were taken as 

[18]
00.0168, 0.02 .s   The other constants are taken as 

0 1, 1Q    s. 

Figs 1-3 display the temperature, displacement, and the 

stress distribution within a wide range of  0 4x x   for 

a particular time 0.3t  for different values of the 

relaxation time parameter
0 0,0.02,0.05.  . The case 

0 0   presents the CTE model. From Fig. 1-3 it is 

observed that relaxation time parameter 
0 has a 

decreasing effect on the magnitude of   , u and 
xx .  

 
Figs. 4-6 depict the temperature,  displacement, and the 

stress variations with a wide range of the space variables 

 0 4x x   for 
0 0.02.  for different values of the time 

parameter 0.1,0.3,0.5t  and we have noticed that the time 

parameter t  play a significant role on all the studied fields. 

The increasing of the value of t causes increasing of the 

values of all the studied fields and makes the speed of the 

waves propagation vanishes more rapidly. 

 
 

5. CONCLUTIONS 

Transient waves created by a periodically varying heat 

sources inside a homogeneous isotropic thermoelastic 

infinite medium are studied under the theories of 

generalized thermoelasticity CTE and LS. The results show 

that the relaxation time have salient effect to the 

distribution of displacement at small values of time. The 

present theoretical results may provide interesting 

information for researchers working on this subject. We 

obtain the following conclusions based on the above 

analysis: 

(i) The thermal relaxation time has significant effects on 

all the field quantities. 

(ii) The values of all the physical quantities converge to 

zero with increasing distance .x  

(iii) The time parameter plays a significant role on all the 

field quantities. 
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Fig-1: Temperature ( )  distribution against x  at            

0.5.t   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig-2: Displacement ( )u  distribution against x  at            

0.5.t   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig-3: Stress ( )xx  distribution against x  at  0.5.t   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig-2: Temperature ( )  distribution against x  at            

0 0.02.   

 
 
Fig-4: Temperature ( )  distribution against x  at            

0 0.02.   

 
 
 
 
 
 
 
 
 

Fig-5: Displacement ( )u  distribution against x  at            

0 0.02.   

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig-6: Stress ( )xx  distribution against x  at            Fig-3: 

Fig-6: Stress ( )xx  distribution against x  at  
0 0.02.   

Fig-6: Stress ( )xx  distribution against x  at  
0 0.02.   
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