
          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 02 Issue: 04 | July-2015                        www.irjet.net                                                              p-ISSN: 2395-0072 

 

© 2015, IRJET.NET- All Rights Reserved  Page 217 
 

Frequent Pattern Mining Over Data Stream Using Compact Sliding 

Window Tree & Sliding Window Model 

Rahul Anil Ghatage 

Student, Department of computer engineering, Imperial College of engineering & research, Pune, India 
---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - The frequent pattern mining in data 

streams is more challenging than mining the patterns 

in traditional databases since several requirements 

need to be additionally satisfied. In the sliding-window 

model of data streams, transactions both enter into and 

leave from the window at each sliding. The continuous, 

unbounded, and ordered sequence of data items 

generated at a rapid rate in a data stream so the 

database become very larger and frequent pattern 

mining methods have been faced problem that do not 

appropriately respond to the unbounded data. In this 

paper, we propose an efficient method to discover the 

set of latest frequent patterns from dynamic data 

stream using sliding window model and CSW (compact 

sliding window) tree. In addition, not only support 

conditions but also improved weight constraints are 

used to express the items and gain the resulting 

maximal frequent patterns more quickly. Extensive 

experiments report that this method has outstanding 

performance in terms of runtime, memory usage as 

compare to previous algorithms. 
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1. INTRODUCTION 
     The data mining finding potentially useful and hidden 
information from large databases, and frequent pattern 
mining is one of the most interesting data mining fields 
which play an important role in extracting meaningful 
information. The frequent patterns mining is probably one 
of the most important concepts in data mining in which 
extracting informative and useful patterns in massive and 
complex datasets and  patterns comprise sets of co-
occurring attribute values, called item sets and different 
mining techniques and algorithms are used to find 
frequent patterns. The well-known frequent pattern 
mining algorithms are apriori algorithm which used by 
user to generate the candidate item set using breadth first 
search technique but it only useful for static database and 
this algorithm required repeatedly scan of database. The 
another important algorithm is FP- growth which use the 
depth first search method to find frequent pattern but it 

required two fixed database scan and it does not generate 
candidate patterns as comparison to apriori algorithm. 
      In data stream data is added at rapid rate and thus, 
they have continuous and unlimited features and their 
sizes are continuously increased according to the 
accumulation of transaction data, so the frequent patterns 
generated over data streams also become very large, 
which means spending a lot of time mining the patterns, 
and thereby it can violate the most important 
requirements for the data stream mining that is immediate 
processing. Data stream mining has to satisfy the 
requirements in which each data element required for 
data stream analysis has to be examined only once and all 
of the entered data elements have to be processed very 
quickly and the results of data stream analysis should be 
available instantly and their quality should also be 
acceptable whenever users want the results. The old 
frequent pattern mining techniques do not satisfy these 
requirements since they need to conduct multiple 
database scans to mine latest frequent patterns. Therefore, 
to resolve these problems apply mining approaches which 
support for single database scan to import the data and 
use effective tree structure to find latest frequent pattern 
over data streams effectively. The data streams are used in 
different industrial fields like network monitoring, sensor 
network analysis, cosmological application, and intrusion 
detection, environmental and weather data analysis.  
 

2. RELATED WORK 
      Many previous research work studies contributed to 
the efficient mining of frequent item sets over data 
streams (Chang & Lee, 2003; Manku & Yu, 2005; Thomas, 
L.T., 2006) [14][15]. According to the stream data 
processing model (Zhu & Shasha, 2002), the research of 
mining frequent item sets in data streams can categorized 
into three categories[21]: landmark-window based mining 
(Li, 2004; Manku & Motwani, 2002), damped-window 
based mining concept is for finding frequent pattern 
(Chang & Lee, 2003; Giannella, 2003), and sliding-window 
based mining (Chang & Lee, 2004; Ahmed, Tanbeer, 
2009)[5]. 
      The most popular frequent pattern mining algorithms 
is apriori (Agrawal & Srikant, 1994) based on Breadth 
First Search finds frequent patterns over static databases 
and generate numerous candidate patterns in the process 
of actual frequent patterns[3] and FP-growth (Pei, Yin, & 
Mao, 2004) on the basis of Depth First Search which 
efficiently conduct mining work but it required two fixed 
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database scans and does not generate candidate 
patterns[4], Based on this basic  frequent pattern mining 
algorithms, a variety of pattern mining algorithms and 
techniques have been proposed, such as frequent pattern 
mining without the minimum support threshold specified 
by users (Chuang, Huang, & Chen, 2008; Li, 2008)[6], 
sequential frequent pattern mining (Chang, Wang, Luan, & 
Tang, 2009; Yun, Ryu, & Yoon, 2011)[2]. 
       Mining of frequent item sets over data stream using 
sliding window is one of the most important problems in 
stream data mining with broad applications because 
different approaches are used for static database and it 
required multiple scan of database. It is also a difficult 
challenging issue, such as unknown or unbound size, 
possibly a very fast arrival rate, inability to backtrack over 
previously arrived transactions, and a lack of system 
control over the order in which the data arrive, so new 
algorithm (Deypir, Sadreddini, 2012) as proposed by three 
phases like window initialization, sliding window in which 
involve the window creation, updating operation,   pattern 
generation [10]. The sliding window is an interesting 
model to solve frequent pattern mining problem since it 
does not need to consider the entire history of received 
transactions and it can handle only a limited range of 
recent transactions. However, previous sliding window 
algorithms require a large amount of memory and 
processing time, new algorithm (Mhmood Deypir, 2013) 
based on a prefix tree data structure to find frequent item 
sets very quickly[20]. 
      The new approach (Gangin Lee, Unil Yun, 2014) 
addresses a solution to find the latest patterns over data 
stream using weighted maximal frequent pattern using 
sliding window concept [1], they proposed approach in 
which within single scan we read the database and load 
the translation and find latest frequent patterns using 
sliding window model but the limitation of this model is 
it’s tree structure because they used FP like tree which 
does not generate candidate patterns and it required much 
more time to perform insertion, deletion and searching 
operation to find them frequent patterns over data stream, 
so the  new approach proposed  (Amol Ghoting, 2012) is 
use to address the limitations of FP tree and use of B+ tree 
to increase the performance of the system and find out the 
frequent patterns quickly[8].         
 

3. MOTIVATION 
     As per the brief literature survey the main limitation of 
existing system is tree structure which allow discover the 
frequent item sets without candidate item set generation 
and it is very difficult to implement due to complex data 
structure and it takes lots of time to build and it needs 
more memory for storing the data items and existing 
system use the formulas to calculate the maximal weight 
of each transaction involve the duplicate data items 
because of this reason it not accurately generate the 
maximal weight of each data item so due to this reason the 
main motivation is use the improved compact sliding 

window tree and weight conditions to find latest maximal 
weighted frequent pattern over data stream with in a  
single scan by analyzing each data item only once and the 
results of data stream analysis should be available 
instantly as well as their quality should also be maintained 
with limited memory usage and finally effectively 
compressing the generated frequent patterns over the 
dynamic data stream. 
  

4. SLIDING WINDOW BASED WEIGHTED 
MAXIMAL FREQUENT PATTERN MINING OVER 
DATA STREAM 
      In this section, we first consider the preliminaries 
which focus on concepts which are used for proposed 
system and compact sliding window tree structure for 
storing the data items. 

4.1 Preliminaries 

       The data stream (DS) can define as an infinite 
sequence of transactions DS= (T1, T2 …Tn) where 
transaction T is set of items (I) which is defined as I= (i1, 
i2…in) each item has unique value and each item have 
weight (w) and set of weight is defined as W= (w1, w2... 
wn) and pattern is combination of one or more items 
available in transaction. 
     The data stream is divided into number of sliding 
window DS= (SW1, SW2 … SWn) where each sliding 
window (SW) consist number of panes, SW= (P1, P2… Pi) 
where 1≤ i ≤ n and pane is set of transaction, P= (T1, T2… 
Tn). The weight of each item is calculated by following 
formula in which we consider the total count of item (O) 
divided by distinct item (D). The support of a pattern C in 
a W, denoted as PSUP is the number of transactions in SW. 
Therefore, a pattern is called frequent in W if its support is 
greater than an absolute minimal support threshold value 
δ. The average weight of pattern (AWP) is calculated by 
set of weight (WSET) divided by number of item (R) then 
finally we calculate weight support, 
Weight support (WS) = PSUP ⃰ AWP 
      If this weight support (WS) is greater than or equal to 
threshold value, δ than it known as weighted frequent 
pattern. 
 

4.2 Compact sliding window tree structure 
        In related work we already consider the limitations of 

tree structure of existing system that it does not generate 

candidate pattern so we required suitable tree structure to 

calculate the weighted maximal frequent pattern over 

sliding window based data stream. Here we use the CSW 

(compact sliding window) tree which based on B+, in this 

tree consist the root, internal node and leaves and when 

we compare this tree with existing system tree structure 

then it have several advantages like it store the data in leaf 

node so the searching of any data is very easy because all 

data is found in leaf node, high fan out, leaf nodes of this 
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tree structure are linked together so full scan of all items 

completed within single linear pass. 

                     
Fig. 1. Compact sliding window (CSW) tree structure 

5. HIGH LEVEL DESIGN 
5.1 Data independence and system architecture 

 
Fig. 2. Data flow architecture 

     In system architecture when user make the mine 
request then system first  load the transactions from data 
stream within a single scan, after the successful database 
connection, the transactions are imported  into compact 
sliding window tree with support value, the  imported 
data pass as input to create window module which create 
the window and specify the each item count and it’s 
weight, our system support for mining latest frequent 
pattern from data stream due to this reason, here we use 
sliding window in the next update window module which 
take the input from create window module  and delete the 
old panes and add new panes to mine latest frequent 
patterns then updated window pass as input  to 
restructure module which perform the extraction, sorting 
and reinsertion operation then pass the sorted, extracted 
data as input  to final mine module which mine all the 
transactions over dynamic data streams and find the latest  
frequent patterns which are greater than threshold value 
and finally display the set of latest frequent patterns over 
the dynamic data stream.  

5.2 Set Theory 
Let S represent our proposed system 
S = {I, O, F, Su, Fa, ϕ   } 
Where, 
I is an Input I = {DS, Ws, Ps, δ} 
      Where,    DS = Data Stream  
        Ws = Window Size 
        Ps = Pane Size 
                 δ = Threshold value 
O is an output = {P} 
Where, P= set of frequent patterns 
Success= Frequent pattern 
F is a function = {LC, CW, UW, RES, MINE} 
LC= LoadConnection (DS) 
       Input = DS (Data Stream) 
       Output = Imported Data 
       Failure = No Data imported 
CW= CreateWindow (ID) 
       Input = Imported Data 
       Output = Window 
       Failure = No Window Created 
UW = UdatedWindow (W) 
       Input = Window 
       Output = Updated Window 
       Failure = No Window Updated 
RES = Restructure (W) 
       Input = Updated Window 
       Output = Sorted Window 
       Failure = No Sorted Data 
MINE = Mining (Sorted Data) 
        Input = Sorted Data 
        Output = Frequent Pattern 
        Failure = No frequent Patterns 
Fa is an failure = No frequent patterns 
ϕ is constraints of the system 
         ϕ = {DS, Ps, Ws} 
 

5.3 Mathematical model using Deterministic 
Finite Automata 

                       
Fig. 3. Deterministic Finite Automata (DFA) 

A deterministic finite automaton M is a 5-tuple,  
(Q, Ʃ, δ, q0, F) consisting as follow 
A finite set of states (Q) = {A, B, C, D, E}  
A finite set of input symbols called the alphabet (Ʃ) = {d, w,      
uw, sd, fp} 
A transition function (δ: Q * Ʃ → Q) = {LD, CW, UW, RES, 
MINE} 
A start state (q0 ϵ Q) = {q0} 
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A set of accept states (F) = {q4} 
    Where: d-document, w-window, uw-update window, sd- 
sorted data, fp-frequent data, LD-load data, CW-create 
window, UW- update window, RES- Restructure, MINE-
Mine 
Derivation (δ) is defined by following transition table 

Table 1 - Transition Table 
       
 
 
 
 
 
 
 
 
 

 
5.4 Sliding window based frequent pattern mining 
algorithm 
  In this section we consider the four important algorithms 
which are used to perform create, update, restructure the 
sliding window and perform the mine operation.   
     The following steps are considered for latest frequent 
pattern mining LFPM algorithm. 
1) At the initial level CSW tree, order, prefix and set of 
frequent patterns are empty. 
2) If there are transactions in data stream then import the 
data. 
3) If CSW tree is empty call create window algorithm. 
4) Else call update window algorithm. 
5) Call restructure algorithm. 
6) If the mine request comes from user then call mine 
algorithm. 
 
1)   Create Window Algorithm 
     The create window algorithm is use to inserting data 
items into a compact sliding window tree. The window 
size indicates the number of panes and the pane size 
represent the number of transactions. Transactions are 
inserted in tree, T according to their incoming order and 
create window algorithm is use to computes support 
descending order regarding the items composing tree. 
Algorithm (Create Window) 
Input - Data stream, DS, Window size, Ws, Pane size, Ps 
Output - created window, w     
Variables -  CSWT- Tree, Tr - New transaction, W - Weight; 
Method – 
Begin 
Window size, Ws = ø, current pane size, Ps = ø; 
if there are new transactions inserted into DS 
for each new transaction, Tr in DS, do 
if (Order != ø) 
insert items of Tr into CSWT according to Order; 
else insert items of Tr into T in their incoming order; 
update supports of the inserted items; 
update W as weights of Tr; 

end for 
End 
 
2)  Update Window Algorithm 
     This algorithm updates the sliding windows as per the 
flow of data stream and delete the old panes and decrease 
the node support, node with 0 support are deleted directly 
and insert the new panes.  
Algorithm (Update Window) 
Input - Created window, w 
Output - Updated window, uw 
Method - 
Begin 
for each path, pi in the old pane, do find tail node ti for pi 
for each node, nk in pi, do 
calculate nk support; 
if nk.support = 0, do 
delete nk; 
shift pane counters of all remaining tail nodes in CSWT to 
left by one; 
for each transaction, Tr of the new pane in DS,  
do  
insert Tr into T according to Order; 
set tail node information for Tr; 
calculate the Order support descending order for the items 
included in the  current CSWT;  
End 
 
3)  Restructure Algorithm 
    The restructure algorithm is use to perform the 
extraction, sorting and reinsertion operations and nodes 
with 0 support are deleted. 
Algorithm (Restructure) 
Input - Updated window, uw 
Output - Restructured sorted data,      
Variables – Pr – Path, CSWT- Compact sliding window tree  
Method -  
Begin 
Sort Order in their support descending order; 
For each path, Pr in CSWT, do  
if Pr is not sorted 
extract Pr from CSWT and decrease support of Pr by last 
nodes support in Pr; 
if there are nodes with 0 support in T delete the 
corresponding node; 
sort Pr depending on Order 
reinsert the sorted Pr into CSWT 
end for 
End    
 
4)  Mine Algorithm 
    The mine algorithm is use to perform mining operation, 
when mining request is received from user then first 
delete the some data items using maximum weight Mw 
value, if tree as single path then mine algorithm check 
whether it is really weighted maximal frequent pattern to 
combine T’s all items with the prefix. If the weight support 

           Alp. 

States 
D W uw Sd fp 

A B Ø Ø Ø Ø 
B Ø C Ø Ø Ø 
C Ø Ø D Ø Ø 
D Ø Ø Ø E Ø 

E Ø Ø Ø Ø Ø 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 02 Issue: 04 | July-2015                        www.irjet.net                                                              p-ISSN: 2395-0072 

 

© 2015, IRJET.NET- All Rights Reserved  Page 221 
 

is greater than the threshold value then combine all 
frequent patterns into set of frequent patterns, P and if 
multiple paths are available in the tree then call the 
algorithm recursively. 
Algorithm (Mine) 
Input - Restructured sorted data, sd 
Output - Set of frequent patterns, P 
Method - 
Begin 
for each data items, dk in T header table, do 
prefix ← dk 
calculate Mw which is the maximum weight among the 
items weights in CSWT; 
if prefix.support * Mw < δ, do 
check the new data item in header table; else 
construct conditional CSWT tree;  
if CSWT has single-path,  
do 
pattern P = prefix ∪ all items in CSWT;  
if WS(pattern) ≥ δ, do 
P = P ∪ pattern;  
else  
for each items, im in the header table of CSWT, do 
prefix = prefix ∪ im; 
Mine(T, prefix, P);  
end for 
End 
 

6. PERFORMANCE EVALUATION 
      In this section, we evaluate performance of the 
proposed LFPM algorithm through extensive experiments. 
The target algorithm is WMFP-SW. The algorithm is 
written in java and used Core 2 duo, 2 GB ram and window 
7 OS. The Real data sets used in run time and memory 
usage experiments are Accidents, Pumsb, Retail, and 
Mushroom, where they can be obtained at 
http://fimi.cs.helsinki.fi/data. The Accidents dataset 
consists of anonymous traffic accident data and pumsb 
dataset includes census data. They have a dense feature. 
Retail dataset is sparse and contains basket datasets in a 
retail supermarket store. Mushroom dataset with a dense 
nature contains hypothetical sample data corresponding 
to mushrooms. In performance evaluation we consider the 
run time and memory usage for different threshold values. 
The tables 3 represent the datasets details which are used 
in experimental work.  

Table 3 - Datasets Details 

Datasets No of Transactions Size(M) 

Retail 88,162 3.97 

Pumsb 49,046 15.9 

Mushroom 8124 0.83 

Accidents 340,183 33.8 

 
 

The following table show the overall pane size and 
window size use for the datasets. 

Table 4 - Window and pane size used for datasets 
Datasets Pane 

Size 
Window Size 

W1 W2 W3 W4 W5 

Retail 10 2 3 4 5 6 

Pumsb 5 2 4 6 8 6 

Mushroom 1 2 4 6 8 6 

Accidents 50 2 3 4 5 6 

 
6.1 RUNTIME ANALYSIS 
        In these runtime experiments, weight ranges for each 
used datasets are set randomly. Figure shows a runtime 
result of the Retail, Accidents dataset. The LFPM algorithm 
presents the fastest runtime performance in all cases. The 
algorithm finds the latest frequent patterns which weight 
value greater than threshold value. When we compare our 
run time with WMFP-SW then our algorithm required less 
time as compare to current algorithm in all cases. As per 
the threshold value we compare our algorithm with 
existing algorithm and in all cases it gives better 
performance for runtime. 

 
Fig. 6. Accidents Dataset (W2) 

 Fig. 7. Retail Dataset (W5) 
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6.2 MEMORY USAGE ANALYSIS 
        The fig. 8 and fig. 9 are present the results of memory 
usage tests for the real and synthetic datasets, where 
weight ranges for the datasets are set in common with the 
runtime experiments. LFPM performs mining operations 
using an data structure, compact sliding window tree 
(CSW tree) because of this reason it provide outstanding 
performance and when we compare the memory usage 
with WMFP-SW algorithm then it consumes very less 
memory. We consider the different threshold value and for 
every threshold value it consumes very less memory as 
compare to existing system. 

 

Fig. 8. Accident Dataset (W2) 

 

Fig. 9. Retail Dataset (W5) 

6.3 SCALABILITY RESULTS 
        The fig. 10 represent  the T10I4DxK datasets in terms 
of runtime, where the weights values between 0.5 and 0.8, 
their threshold value is fixed as 0.1%, and number of 
transactions are increases from 100 to 1000 K. In this 
figure graph slop is sharply increase after the number of 
transaction 200k, which means that their scalability 
results by the increasing transactions are unfavorable and 
the runtime of LFPM stably increases according to the 
growth of the transactions, so the algorithm LFPM support 
for scalability and when we compare the experimental 
result with existing algorithm WMFP-SW then it gives 
outstanding runtime results. 

 

Fig. 10. Runtime scalability of T10I4DxK (d = 0.1%) 

7.  CONCLUSION 
      Our approach mainly focus on finding frequent pattern 
within single database scan over dynamic data stream 
using effective compact sliding window tree structure and 
improved weight conditions which avoid the duplicate 
items in transactions and provide accurate frequent 
patterns, additionally it extract mining results regarding 
the latest data over data streams, and can gain the 
resulting patterns more quickly, so this approach is very 
useful to find frequent pattern over wide range of data 
stream like retail, accident, marketing and network related 
data stream. The extensive experiments presented in this 
paper showed that the proposed algorithm could mine 
latest frequent patterns more effectively than the previous 
algorithms and it gives outstanding performance in terms 
of runtime, memory usage. The suggested techniques and 
strategies can be also applicable in other mining areas 
such as closed frequent pattern mining, high utility pattern 
mining. 
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