
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 217

Frequent Pattern Mining Over Data Stream Using Compact Sliding

Window Tree & Sliding Window Model

Rahul Anil Ghatage

Student, Department of computer engineering, Imperial College of engineering & research, Pune, India
---***---
Abstract - The frequent pattern mining in data

streams is more challenging than mining the patterns

in traditional databases since several requirements

need to be additionally satisfied. In the sliding-window

model of data streams, transactions both enter into and

leave from the window at each sliding. The continuous,

unbounded, and ordered sequence of data items

generated at a rapid rate in a data stream so the

database become very larger and frequent pattern

mining methods have been faced problem that do not

appropriately respond to the unbounded data. In this

paper, we propose an efficient method to discover the

set of latest frequent patterns from dynamic data

stream using sliding window model and CSW (compact

sliding window) tree. In addition, not only support

conditions but also improved weight constraints are

used to express the items and gain the resulting

maximal frequent patterns more quickly. Extensive

experiments report that this method has outstanding

performance in terms of runtime, memory usage as

compare to previous algorithms.

Key Words: Data mining, Data stream, Tree, Frequent

pattern.

1. INTRODUCTION
 The data mining finding potentially useful and hidden
information from large databases, and frequent pattern
mining is one of the most interesting data mining fields
which play an important role in extracting meaningful
information. The frequent patterns mining is probably one
of the most important concepts in data mining in which
extracting informative and useful patterns in massive and
complex datasets and patterns comprise sets of co-
occurring attribute values, called item sets and different
mining techniques and algorithms are used to find
frequent patterns. The well-known frequent pattern
mining algorithms are apriori algorithm which used by
user to generate the candidate item set using breadth first
search technique but it only useful for static database and
this algorithm required repeatedly scan of database. The
another important algorithm is FP- growth which use the
depth first search method to find frequent pattern but it

required two fixed database scan and it does not generate
candidate patterns as comparison to apriori algorithm.
 In data stream data is added at rapid rate and thus,
they have continuous and unlimited features and their
sizes are continuously increased according to the
accumulation of transaction data, so the frequent patterns
generated over data streams also become very large,
which means spending a lot of time mining the patterns,
and thereby it can violate the most important
requirements for the data stream mining that is immediate
processing. Data stream mining has to satisfy the
requirements in which each data element required for
data stream analysis has to be examined only once and all
of the entered data elements have to be processed very
quickly and the results of data stream analysis should be
available instantly and their quality should also be
acceptable whenever users want the results. The old
frequent pattern mining techniques do not satisfy these
requirements since they need to conduct multiple
database scans to mine latest frequent patterns. Therefore,
to resolve these problems apply mining approaches which
support for single database scan to import the data and
use effective tree structure to find latest frequent pattern
over data streams effectively. The data streams are used in
different industrial fields like network monitoring, sensor
network analysis, cosmological application, and intrusion
detection, environmental and weather data analysis.

2. RELATED WORK
 Many previous research work studies contributed to
the efficient mining of frequent item sets over data
streams (Chang & Lee, 2003; Manku & Yu, 2005; Thomas,
L.T., 2006) [14][15]. According to the stream data
processing model (Zhu & Shasha, 2002), the research of
mining frequent item sets in data streams can categorized
into three categories[21]: landmark-window based mining
(Li, 2004; Manku & Motwani, 2002), damped-window
based mining concept is for finding frequent pattern
(Chang & Lee, 2003; Giannella, 2003), and sliding-window
based mining (Chang & Lee, 2004; Ahmed, Tanbeer,
2009)[5].
 The most popular frequent pattern mining algorithms
is apriori (Agrawal & Srikant, 1994) based on Breadth
First Search finds frequent patterns over static databases
and generate numerous candidate patterns in the process
of actual frequent patterns[3] and FP-growth (Pei, Yin, &
Mao, 2004) on the basis of Depth First Search which
efficiently conduct mining work but it required two fixed

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 218

database scans and does not generate candidate
patterns[4], Based on this basic frequent pattern mining
algorithms, a variety of pattern mining algorithms and
techniques have been proposed, such as frequent pattern
mining without the minimum support threshold specified
by users (Chuang, Huang, & Chen, 2008; Li, 2008)[6],
sequential frequent pattern mining (Chang, Wang, Luan, &
Tang, 2009; Yun, Ryu, & Yoon, 2011)[2].
 Mining of frequent item sets over data stream using
sliding window is one of the most important problems in
stream data mining with broad applications because
different approaches are used for static database and it
required multiple scan of database. It is also a difficult
challenging issue, such as unknown or unbound size,
possibly a very fast arrival rate, inability to backtrack over
previously arrived transactions, and a lack of system
control over the order in which the data arrive, so new
algorithm (Deypir, Sadreddini, 2012) as proposed by three
phases like window initialization, sliding window in which
involve the window creation, updating operation, pattern
generation [10]. The sliding window is an interesting
model to solve frequent pattern mining problem since it
does not need to consider the entire history of received
transactions and it can handle only a limited range of
recent transactions. However, previous sliding window
algorithms require a large amount of memory and
processing time, new algorithm (Mhmood Deypir, 2013)
based on a prefix tree data structure to find frequent item
sets very quickly[20].
 The new approach (Gangin Lee, Unil Yun, 2014)
addresses a solution to find the latest patterns over data
stream using weighted maximal frequent pattern using
sliding window concept [1], they proposed approach in
which within single scan we read the database and load
the translation and find latest frequent patterns using
sliding window model but the limitation of this model is
it’s tree structure because they used FP like tree which
does not generate candidate patterns and it required much
more time to perform insertion, deletion and searching
operation to find them frequent patterns over data stream,
so the new approach proposed (Amol Ghoting, 2012) is
use to address the limitations of FP tree and use of B+ tree
to increase the performance of the system and find out the
frequent patterns quickly[8].

3. MOTIVATION
 As per the brief literature survey the main limitation of
existing system is tree structure which allow discover the
frequent item sets without candidate item set generation
and it is very difficult to implement due to complex data
structure and it takes lots of time to build and it needs
more memory for storing the data items and existing
system use the formulas to calculate the maximal weight
of each transaction involve the duplicate data items
because of this reason it not accurately generate the
maximal weight of each data item so due to this reason the
main motivation is use the improved compact sliding

window tree and weight conditions to find latest maximal
weighted frequent pattern over data stream with in a
single scan by analyzing each data item only once and the
results of data stream analysis should be available
instantly as well as their quality should also be maintained
with limited memory usage and finally effectively
compressing the generated frequent patterns over the
dynamic data stream.

4. SLIDING WINDOW BASED WEIGHTED
MAXIMAL FREQUENT PATTERN MINING OVER
DATA STREAM
 In this section, we first consider the preliminaries
which focus on concepts which are used for proposed
system and compact sliding window tree structure for
storing the data items.

4.1 Preliminaries

 The data stream (DS) can define as an infinite
sequence of transactions DS= (T1, T2 …Tn) where
transaction T is set of items (I) which is defined as I= (i1,
i2…in) each item has unique value and each item have
weight (w) and set of weight is defined as W= (w1, w2...
wn) and pattern is combination of one or more items
available in transaction.
 The data stream is divided into number of sliding
window DS= (SW1, SW2 … SWn) where each sliding
window (SW) consist number of panes, SW= (P1, P2… Pi)
where 1≤ i ≤ n and pane is set of transaction, P= (T1, T2…
Tn). The weight of each item is calculated by following
formula in which we consider the total count of item (O)
divided by distinct item (D). The support of a pattern C in
a W, denoted as PSUP is the number of transactions in SW.
Therefore, a pattern is called frequent in W if its support is
greater than an absolute minimal support threshold value
δ. The average weight of pattern (AWP) is calculated by
set of weight (WSET) divided by number of item (R) then
finally we calculate weight support,
Weight support (WS) = PSUP ⃰ AWP
 If this weight support (WS) is greater than or equal to
threshold value, δ than it known as weighted frequent
pattern.

4.2 Compact sliding window tree structure
 In related work we already consider the limitations of

tree structure of existing system that it does not generate

candidate pattern so we required suitable tree structure to

calculate the weighted maximal frequent pattern over

sliding window based data stream. Here we use the CSW

(compact sliding window) tree which based on B+, in this

tree consist the root, internal node and leaves and when

we compare this tree with existing system tree structure

then it have several advantages like it store the data in leaf

node so the searching of any data is very easy because all

data is found in leaf node, high fan out, leaf nodes of this

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 219

tree structure are linked together so full scan of all items

completed within single linear pass.

Fig. 1. Compact sliding window (CSW) tree structure

5. HIGH LEVEL DESIGN
5.1 Data independence and system architecture

Fig. 2. Data flow architecture

 In system architecture when user make the mine
request then system first load the transactions from data
stream within a single scan, after the successful database
connection, the transactions are imported into compact
sliding window tree with support value, the imported
data pass as input to create window module which create
the window and specify the each item count and it’s
weight, our system support for mining latest frequent
pattern from data stream due to this reason, here we use
sliding window in the next update window module which
take the input from create window module and delete the
old panes and add new panes to mine latest frequent
patterns then updated window pass as input to
restructure module which perform the extraction, sorting
and reinsertion operation then pass the sorted, extracted
data as input to final mine module which mine all the
transactions over dynamic data streams and find the latest
frequent patterns which are greater than threshold value
and finally display the set of latest frequent patterns over
the dynamic data stream.

5.2 Set Theory
Let S represent our proposed system
S = {I, O, F, Su, Fa, ϕ }
Where,
I is an Input I = {DS, Ws, Ps, δ}
 Where, DS = Data Stream
 Ws = Window Size
 Ps = Pane Size
 δ = Threshold value
O is an output = {P}
Where, P= set of frequent patterns
Success= Frequent pattern
F is a function = {LC, CW, UW, RES, MINE}
LC= LoadConnection (DS)
 Input = DS (Data Stream)
 Output = Imported Data
 Failure = No Data imported
CW= CreateWindow (ID)
 Input = Imported Data
 Output = Window
 Failure = No Window Created
UW = UdatedWindow (W)
 Input = Window
 Output = Updated Window
 Failure = No Window Updated
RES = Restructure (W)
 Input = Updated Window
 Output = Sorted Window
 Failure = No Sorted Data
MINE = Mining (Sorted Data)
 Input = Sorted Data
 Output = Frequent Pattern
 Failure = No frequent Patterns
Fa is an failure = No frequent patterns
ϕ is constraints of the system
 ϕ = {DS, Ps, Ws}

5.3 Mathematical model using Deterministic
Finite Automata

Fig. 3. Deterministic Finite Automata (DFA)

A deterministic finite automaton M is a 5-tuple,
(Q, Ʃ, δ, q0, F) consisting as follow
A finite set of states (Q) = {A, B, C, D, E}
A finite set of input symbols called the alphabet (Ʃ) = {d, w,
uw, sd, fp}
A transition function (δ: Q * Ʃ → Q) = {LD, CW, UW, RES,
MINE}
A start state (q0 ϵ Q) = {q0}

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 220

A set of accept states (F) = {q4}
 Where: d-document, w-window, uw-update window, sd-
sorted data, fp-frequent data, LD-load data, CW-create
window, UW- update window, RES- Restructure, MINE-
Mine
Derivation (δ) is defined by following transition table

Table 1 - Transition Table

5.4 Sliding window based frequent pattern mining
algorithm
 In this section we consider the four important algorithms
which are used to perform create, update, restructure the
sliding window and perform the mine operation.
 The following steps are considered for latest frequent
pattern mining LFPM algorithm.
1) At the initial level CSW tree, order, prefix and set of
frequent patterns are empty.
2) If there are transactions in data stream then import the
data.
3) If CSW tree is empty call create window algorithm.
4) Else call update window algorithm.
5) Call restructure algorithm.
6) If the mine request comes from user then call mine
algorithm.

1) Create Window Algorithm
 The create window algorithm is use to inserting data
items into a compact sliding window tree. The window
size indicates the number of panes and the pane size
represent the number of transactions. Transactions are
inserted in tree, T according to their incoming order and
create window algorithm is use to computes support
descending order regarding the items composing tree.
Algorithm (Create Window)
Input - Data stream, DS, Window size, Ws, Pane size, Ps
Output - created window, w
Variables - CSWT- Tree, Tr - New transaction, W - Weight;
Method –
Begin
Window size, Ws = ø, current pane size, Ps = ø;
if there are new transactions inserted into DS
for each new transaction, Tr in DS, do
if (Order != ø)
insert items of Tr into CSWT according to Order;
else insert items of Tr into T in their incoming order;
update supports of the inserted items;
update W as weights of Tr;

end for
End

2) Update Window Algorithm
 This algorithm updates the sliding windows as per the
flow of data stream and delete the old panes and decrease
the node support, node with 0 support are deleted directly
and insert the new panes.
Algorithm (Update Window)
Input - Created window, w
Output - Updated window, uw
Method -
Begin
for each path, pi in the old pane, do find tail node ti for pi
for each node, nk in pi, do
calculate nk support;
if nk.support = 0, do
delete nk;
shift pane counters of all remaining tail nodes in CSWT to
left by one;
for each transaction, Tr of the new pane in DS,
do
insert Tr into T according to Order;
set tail node information for Tr;
calculate the Order support descending order for the items
included in the current CSWT;
End

3) Restructure Algorithm
 The restructure algorithm is use to perform the
extraction, sorting and reinsertion operations and nodes
with 0 support are deleted.
Algorithm (Restructure)
Input - Updated window, uw
Output - Restructured sorted data,
Variables – Pr – Path, CSWT- Compact sliding window tree
Method -
Begin
Sort Order in their support descending order;
For each path, Pr in CSWT, do
if Pr is not sorted
extract Pr from CSWT and decrease support of Pr by last
nodes support in Pr;
if there are nodes with 0 support in T delete the
corresponding node;
sort Pr depending on Order
reinsert the sorted Pr into CSWT
end for
End

4) Mine Algorithm
 The mine algorithm is use to perform mining operation,
when mining request is received from user then first
delete the some data items using maximum weight Mw
value, if tree as single path then mine algorithm check
whether it is really weighted maximal frequent pattern to
combine T’s all items with the prefix. If the weight support

 Alp.

States
D W uw Sd fp

A B Ø Ø Ø Ø
B Ø C Ø Ø Ø
C Ø Ø D Ø Ø
D Ø Ø Ø E Ø

E Ø Ø Ø Ø Ø

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 221

is greater than the threshold value then combine all
frequent patterns into set of frequent patterns, P and if
multiple paths are available in the tree then call the
algorithm recursively.
Algorithm (Mine)
Input - Restructured sorted data, sd
Output - Set of frequent patterns, P
Method -
Begin
for each data items, dk in T header table, do
prefix ← dk
calculate Mw which is the maximum weight among the
items weights in CSWT;
if prefix.support * Mw < δ, do
check the new data item in header table; else
construct conditional CSWT tree;
if CSWT has single-path,
do
pattern P = prefix ∪ all items in CSWT;
if WS(pattern) ≥ δ, do
P = P ∪ pattern;
else
for each items, im in the header table of CSWT, do
prefix = prefix ∪ im;
Mine(T, prefix, P);
end for
End

6. PERFORMANCE EVALUATION
 In this section, we evaluate performance of the
proposed LFPM algorithm through extensive experiments.
The target algorithm is WMFP-SW. The algorithm is
written in java and used Core 2 duo, 2 GB ram and window
7 OS. The Real data sets used in run time and memory
usage experiments are Accidents, Pumsb, Retail, and
Mushroom, where they can be obtained at
http://fimi.cs.helsinki.fi/data. The Accidents dataset
consists of anonymous traffic accident data and pumsb
dataset includes census data. They have a dense feature.
Retail dataset is sparse and contains basket datasets in a
retail supermarket store. Mushroom dataset with a dense
nature contains hypothetical sample data corresponding
to mushrooms. In performance evaluation we consider the
run time and memory usage for different threshold values.
The tables 3 represent the datasets details which are used
in experimental work.

Table 3 - Datasets Details

Datasets No of Transactions Size(M)

Retail 88,162 3.97

Pumsb 49,046 15.9

Mushroom 8124 0.83

Accidents 340,183 33.8

The following table show the overall pane size and
window size use for the datasets.

Table 4 - Window and pane size used for datasets
Datasets Pane

Size
Window Size

W1 W2 W3 W4 W5

Retail 10 2 3 4 5 6

Pumsb 5 2 4 6 8 6

Mushroom 1 2 4 6 8 6

Accidents 50 2 3 4 5 6

6.1 RUNTIME ANALYSIS
 In these runtime experiments, weight ranges for each
used datasets are set randomly. Figure shows a runtime
result of the Retail, Accidents dataset. The LFPM algorithm
presents the fastest runtime performance in all cases. The
algorithm finds the latest frequent patterns which weight
value greater than threshold value. When we compare our
run time with WMFP-SW then our algorithm required less
time as compare to current algorithm in all cases. As per
the threshold value we compare our algorithm with
existing algorithm and in all cases it gives better
performance for runtime.

Fig. 6. Accidents Dataset (W2)

 Fig. 7. Retail Dataset (W5)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 222

6.2 MEMORY USAGE ANALYSIS
 The fig. 8 and fig. 9 are present the results of memory
usage tests for the real and synthetic datasets, where
weight ranges for the datasets are set in common with the
runtime experiments. LFPM performs mining operations
using an data structure, compact sliding window tree
(CSW tree) because of this reason it provide outstanding
performance and when we compare the memory usage
with WMFP-SW algorithm then it consumes very less
memory. We consider the different threshold value and for
every threshold value it consumes very less memory as
compare to existing system.

Fig. 8. Accident Dataset (W2)

Fig. 9. Retail Dataset (W5)

6.3 SCALABILITY RESULTS
 The fig. 10 represent the T10I4DxK datasets in terms
of runtime, where the weights values between 0.5 and 0.8,
their threshold value is fixed as 0.1%, and number of
transactions are increases from 100 to 1000 K. In this
figure graph slop is sharply increase after the number of
transaction 200k, which means that their scalability
results by the increasing transactions are unfavorable and
the runtime of LFPM stably increases according to the
growth of the transactions, so the algorithm LFPM support
for scalability and when we compare the experimental
result with existing algorithm WMFP-SW then it gives
outstanding runtime results.

Fig. 10. Runtime scalability of T10I4DxK (d = 0.1%)

7. CONCLUSION
 Our approach mainly focus on finding frequent pattern
within single database scan over dynamic data stream
using effective compact sliding window tree structure and
improved weight conditions which avoid the duplicate
items in transactions and provide accurate frequent
patterns, additionally it extract mining results regarding
the latest data over data streams, and can gain the
resulting patterns more quickly, so this approach is very
useful to find frequent pattern over wide range of data
stream like retail, accident, marketing and network related
data stream. The extensive experiments presented in this
paper showed that the proposed algorithm could mine
latest frequent patterns more effectively than the previous
algorithms and it gives outstanding performance in terms
of runtime, memory usage. The suggested techniques and
strategies can be also applicable in other mining areas
such as closed frequent pattern mining, high utility pattern
mining.

8. REFERENCES
[1] Gangin Lee, Unil Yun , Keun Ho Ryu, “Sliding window

based weighted maximal frequent pattern mining
over data streams”, Expert Systems with
Applications, vol. 41, pp. 694–708, 2014.

[2] Chen, Y., Bie, R., & Xu, C., “A new approach for
maximal frequent sequential patterns mining over
data streams”, International Journal of Digital
Content Technology & its Application, Vol. 5(6), pp.
104–112, 2011.

[3] Agrawal, R., & Srikant, R., “Fast algorithms for mining
association rules”, in proceedings of the 20th
international conference on very large databases, pp.
487–499, 1994.

[4] Jiawei Han, Jian Pei, Yiwen Yin, “Mining Frequent
Patterns without Candidate Generation: A Frequent-
Pattern Tree Approach”, Data Mining and Knowledge
Discovery, Vol. 8, pp. 53-87, 2004.

[5] Ahmed, C. F., Tanbeer, S. K., Jeong, B. S., “An efficient
algorithm for sliding window-based weighted
frequent pattern mining over data streams”, IEICE
Transactions, Vol. 92-D (7), pp. 1369–1381, 2009.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 223

[6] Li, H., “A sliding window method for finding Top-k
path traversal patterns over streaming Web click-
sequences”, Expert Systems with Applications, Vol. 36
(3), pp. 4382 - 4386, 2008.

[7] Chen, Y., Bie, R., & Xu, C., “A new approach for
maximal frequent sequential patterns mining over
data streams”, International Journal of Digital
Content Technology and its Applications, Vol. 5 (6),
pp. 104–112, 2011.

[8] Amol Ghoting, Gregory Buehrer, Srinivasan
Parthasarathy, “Cache-conscious Frequent Pattern
Mining on a Modern Processor”, Springer VLDB
Journal, vol. 16, Issue 1, pp. 77-96, 2006.

[9] Chen, H., Shu, L., Xia, J., & Deng, Q., “Mining frequent
patterns in a varying-size sliding window of online
transactional data streams”, Information Sciences,
vol. 215, pp. 15–36, 2012.

[10] Deypir, M., Sadreddini, M. H., & Hashemi, S., “Towards
a variable size sliding window model for frequent
item set mining over data streams”, Computers &
industrial engineering, Vol. 63(1), pp. 161–172, 2012.

[11] Farzanyar, Z., Kangavari, M. R., & Cercone, “Max-
FISM: Mining (recently) maximal frequent item sets
over data streams using the sliding window model”,
Computers & Mathematics with Applications, Vol.
64(6), pp. 1706–1718, 2012.

[12] Zhang, X., & Zhang, Y., “Sliding-window Top-k pattern
mining on uncertain streams”, Journal of
Computational Information Systems, vol. 7(3), pp.
984–992, 2011.

[13] Yuh-Jiuan Tsay, Tain-Jung Hsu, Jing-Rung Yu, “FIUT: A
new method for mining frequent item sets”,
Information Sciences, vol. 179, pp 1724–1737, 2009.

[14] Thomas, L.T., Valluri, S.R., & Karlapalem, K., “MARGIN:
Maximal frequent subgraph Mining”, In Proceedings
of the 6th IEEE international conference on data
mining, pp. 1097–1101, 2006.

[15] Gouda, Zaki, M. J., “GenMax: An efficient algorithm for
mining maximal frequent item sets”, Data Mining and
Knowledge Discovery, vol. 11(3), pp. 223–242, 2005.

[16] Luo, C., & Chung, S. M., “A scalable algorithm for
mining maximal frequent sequences using a sample”,
Knowledge and Information Systems, vol. 15(2), pp.
149–179, 2008.

[17] Tanbeer, S. K., Ahmed, C. F., Jeong, B. S., & Lee, Y. K.,
“Efficient single-pass frequent pattern mining using a
prefix-tree”, Information Sciences, vol. 179(5), pp.
559–583, 2009.

[18] Yang, C., Li, Y., Zhang, C., & Hu, Y., “A novel algorithm
of mining maximal frequent pattern based on
projection sum tree”, Fuzzy Systems and Knowledge
Discovery, vol. 1, pp. 458–462, 2007.

[19] Zhi-Hong Deng, “Fast mining Top-Rank-k frequent
patterns by using Node-lists”, Expert Systems with
Applications, Vol. 4, pp. 1763–1768, 2014.

[20] Mhmood Deypir, Mohammad Hadi Sadreddini, “An
Efficient Sliding Window Based Algorithm for
Adaptive Frequent Item set Mining over Data
Streams”, Journal of Information Science and
Engineering, Vol. 29, pp. 1001-1020, 2013.

[21] Yunyue Zhu, Dennis Shasha, “StatStream: Statistical
Monitoring of Thousands of Data Streams in Real
Time”, VLDB, Vol. 15, 2002.

[22] Caiyan Dai, Ling Chen, “An Algorithm for Mining
Frequent Closed Item sets in Data Stream”, Physics
Procedia, Vol. 24, PP. 1722 – 1728, 2012

