Analysis of Cavity and Composite Walls to Improve the Comfort in Building Envelope using Ecotect

Mr. Abhishek R. Deshmukh¹, Prof. M. S. Salunkhe² Prof. N. N. Shinde³

¹Research Student, Department of Technology, Shivaji University, Kolhapur, Maharashtra, India

^{2,3}Professor, Department of Technology, Shivaji University, Kolhapur, Maharshtra, India

***_____

Abstract- Cavity and Composite walls are used to insulate the inner building environment form the outer. But the Experimental analysis can show many variations due to human errors and instrumental errors. The use of simulation tools can help in determining more reliable results that can be used for complete design of building.

This document concentrates on comfort analysis of building by analysing the cavity walls and composite walls in Ecotect Analysis, a building thermal simulation tool, for Pune region (lat. 18.5 long. 73.8), a moderate climatic zone in India. It is observed that in this region increased discomfort is due to too hot discomfort degree hours (DDH) and study further concentrates on reducing the too hot discomfort degree hours and increase the comfort level

Keywords: Cavity wall, Composite wall, Comfort, Discomfort Degree Hours, Building envelope

1. INTRODUCTION

A building interacts with the environment through its external facades such as roof, walls, windows and projections referred as building envelope. The envelope acts as a thermal shell, which if thoughtlessly constructed, would result in energy leaks through every component. Hence, each components needs to be properly chosen to ensure an energy efficient building. The choice depend onsite and primary objective is to examine the site conditions. Besides an ideal orientation at the site, proper configuration of building envelope plays a significant role **in building's thermal performance.**

It is observed in moderate zones in India at Pune (lat. 18.5° long. 73.8°) the increased discomfort level is due to too hot discomfort degree hours, and maximum reduction in too hot DDH is observed for the width of 50 mm for air (minimum possible width) and insulation materials like EPE and EPS.

1.1 Cavity walls

Cavity wall consists of an outer brick or block leaf separated by an inner brick or block leaf by the means of an air gap called as cavity. In cavity walls, the air gap inhibits the transmission of heat into or out of the building as air acts as a bad conductor of heat. In composite walls, the cavities are filled with insulating materials by adjusting its thickness.

1.2 Comfort

Thermal comfort is that condition of mind which expresses satisfaction with the thermal environment. It is also range of climatic condition in which majority of people will not feel discomfort of either heat or cold. Such a zone in still air corresponds to a range of 20 to 30°C of dry bulb temperature and 30 to 60% of relative humidity. Besides, various climatic conditions such as wind speed, vapour pressure and radiation also affect the comfort conditions.

The comfort is measured on the basis of Discomfort Degree hours (DDH). DDH is the sum of the hourly room air temperature outside comfort zone.

2. RESEARCH METHODOLOGY

The analysis consists of following cavities and composite materials

- 2.1 Selection of Base case for performance evaluation
- 2.2 Selection of minimum width for air cavity
- 2.3 Selection of insulation material.
- 2.4 Selection of efficient width of insulation in walls

2.1 Selection of Base case for performance evaluation

The building envelope acts differently in different climatic zones. Thermal performance of the building can change according to the climate of the region where the building is located, and thus according to the location the availability of material used in construction of the building also differs. Hence, a base case is required to be considered for reference and creating a base for evaluation of building envelope for given climatic zone.

The base case will include the material used for building envelope for a given region. In this case the region under consideration is Pune (lat. 18.5° long. 73.8°) in Maharashtra state of India, which falls under moderate climatic zone of the six climatic zones in India.

The base case for moderate region is given below

Table 1- Base case for building envelope in moderate zones

Building Components	Material assigned
Wall	Double Brick plaster
Doors	Solid core Pine Timber
Windows	Single glazed Aluminium frame
Floor	Concrete Slab and Tile on Ground
Roof	Concrete and Asphalt

2.2 Selection of minimum width for air cavity

The air cavity is responsible to provide insulation in the cavity wall and acts as barrier to the transmission of heat. Air cavity causes the convective heat transfer which is independent of width of cavity. Due to this the U- value of the air cavity wall remains constant until and the wall material is changed.

Thus it is necessary to select such a width which is minimum and easy for construction of wall and maintain a uniform layer of air between the two leaves of wall.

2.3 Selection of insulation material

Selection of insulation is an important aspect as the material must be low cost, durable, and moisture resistant and most importantly low in thermal conductivity.

The materials selected in this case are Expanded polyethylene (EPE) and Expanded polyesterene (EPS).

Table 2- Thermal conductivity of insulation materials

Material	Conductivity (W/ m-°K)
EPE	0.414
EPS	0.035

2.4 Selection of efficient width of insulation in wall

The efficient width of insulation is that which results in maximum reduction of discomfort degree hours and provide maximum comfort as compared to solid walls.

In the region the cavity walls are still not popular in use and thus solid walls are in practise in building envelope.

3. ANALYSIS

Analysis of building envelope is done using the Ecotect Analysis 2011, thermal simulation tool for analysis of buildings. The comfort zone (temperature range) for the given moderate zone is derived from the bio-climatic chart of Pune region (lat. 18.5° long. 73.8°) i.e 22 - 26°C.

The unit of comfort used by the simulation tool is Discomfort Degree Hours (DDH) is the sum of the hourly room temperature outside the comfort zone Thermal analysis of building on the basis of comfort is done for moderate climatic zone. The analysis outcomes obtained from the simulation tool are as follows

Graph 1- Discomfort Degree Hours for Base case

Table 3- Discomfort Degree Hours for Base case

DISCOMFORT DEGREE HOURS						
	Zone:	Zone 1				
Zo	ne is not aiı	r-conditioned	d.			
Occupancy:	Weekdays (0-24, Weeke	ends 00-24.			
Cor	nfort: Band	= 22.0 - 26.0	С			
TOO TOO HOT COOL TOTAL						
MONTH DegHrs DegHrs DegHrs						
Jan 55 935 990						
Feb 224 474 698						
Mar	1137	65	1202			

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 02 Issue: 04 | July-2015 www.irjet.net

p-ISSN: 2395-0072

_		_	
Apr	1898	0	1898
May	2147	0	2147
Jun	941	0	941
Jul	261	0	261
Aug	134	0	134
Sep	299	0	299
Oct	367	5	372
Nov	146	436	582
Dec	33	1097	1130
TOTAL	7642	3012	10654

The table 3 shows the base case of reference for comfort analysis. These results are used for evaluation of cavity walls and composite walls (Cavity walls filled with insulation)

The solid wall in the base case was replaced by the cavity wall and following results were obtained by thermal analysis.

Graph 2-Discomfort Degree hours for air cavity wall Table 4- Discomfort Degree hours for air cavity wall

DISCOMFORT DEGREE HOURS				
	Zone:	Zone 1		
Zo	one is not ai	r-conditioned	d.	
Occupancy	y: Weekday: 2	s 00-24, Weel 4.	kends 00-	
Со	mfort: Band	= 22.0 - 26.0	C	
	TOO HOT	TOO COOL	TOTAL	
MONTH	DegHrs	DegHrs	DegHrs	
Jan	30	845	875	
Feb 160 397 557				
Mar	1057	35	1091	
Apr	1893	0	1893	
May	2167	0	2167	

	-		
Jun	940	0	940
Jul	244	0	244
Aug	117	0	117
Sep	270	0	270
Oct	340	3	343
Nov	113	382	495
Dec	14	1011	1026
TOTAL	7345	2673	10018

The results shown in the table 4 are same for all widths (50 mm, 100mm, 150mm, 200mm) analyzed. These results are same because only cavity width is varied and thickness of two leafs is kept constant. As through the air cavity convective heat transfer takes place and it is independent of thickness of cavity, so the U- value of the cavity wall of all widths remains constant, and thus the heat transfer through the wall. Hence, the comfort calculations show the same results. Thus it can be seen that the 50mm cavity width is effective for obtaining comfort level more than that in case of solid walls.

For cavity filled with EPE insulation, following results a. were obtained-

Graph 3-DDH for EPE insulation of 50 mm width Table 5- DDH for EPE insulation of 50 mm width

DISCOMFORT DEGREE HOURS				
	Zone:	Zone 1		
Zo	one is not ai	r-conditioned		
Occupancy: Weekdays 00-24, Weekends 00- 24.				
Со	Comfort: Band = 22.0 - 26.0 C			
TOO HOT TOO COOL TOTAL				
MONTH DegHrs DegHrs DegHrs				
Jan 15 983 997				
Feb	74	499	573	

International Research Journal of Engineering and Technology (IRJET)e-ISSVolume: 02 Issue: 04 | July-2015www.irjet.netp-ISSI

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

Mar	792	77	869
Apr	1577	0	1577
May	2004	0	2004
Jun	992	0	992
Jul	308	0	308
Aug	153	0	153
Sep	305	0	305
Oct	321	7	328
Nov	96	465	561
Dec	5	1127	1132
TOTAL	6642	3158	9800

Table 5 shows the results obtained when the 50 mm air cavity was filled with EPE insulation of same width.

Graph 4-DDH for EPE insulation of 100 mm width

Table 6- DDH for EPE insulation of 100 mm width

DISCOMFORT DEGREE HOURS					
	Zone:	Zone 1			
Z	one is not ai	r-conditioned			
Occupancy:	Weekdays (00-24, Weeke	nds 00-24.		
Со	mfort: Band	= 22.0 - 26.0	С		
	TOO				
	HOT	TOO COOL	TOTAL		
MONTH	DegHrs	DegHrs	DegHrs		
Jan	21	911	932		
Feb	89 439 528				
Mar	806 50 85				
Apr	1625 0 1625				
May	2050 0 2050				
Jun	992	992 0 992			
Jul	290	0	290		
Aug	143	0	143		
Sep	289	0	289		
Oct	314 4 318				
Nov	100	422	522		
Dec	11	1060	1071		
TOTAL	6730	2886	9616		

Graph 5-DDH for EPE insulation of 150mm width

Table 7- DDH for EPE insulation of 150mm width

DISCOMFORT DEGREE HOURS						
	Zone: Zone 1					
Zc	ne is not air	-conditioned	l.			
Occupancy:	Weekdays 0	0-24, Weeke	nds 00-24.			
Cor	mfort: Band	= 22.0 - 26.0	С			
	TOO HOT	TOO COOL	TOTAL			
MONTH	DegHrs	DegHrs	DegHrs			
Jan	22	903	925			
Feb	90	435	525			
Mar	812	49	861			
Apr	1635 0 1635					
May	y 2061 0 2061					
Jun	1001	0	1001			
Jul	295	0	295			
Aug	146	0	146			
Sep	293	0	293			
Oct	318	4	322			
Nov	Nov 102 418 520					
Dec	11	1052	1064			
TOTAL	6786	2861	9647			

Graph 6-DDH for EPE insulation of 200 mm width

Table 8- DDH for E	PE insulation	of 200 mm	width
--------------------	---------------	-----------	-------

DISCOMFORT DEGREE HOURS				
	Zone: Z	Zone 1		
Zo	ne is not air	-conditioned	l.	
Occupancy:	Weekdays 0	0-24, Weeke	nds 00-24.	
Cor	nfort: Band	= 22.0 - 26.0	С	
	TOO HOT	TOO COOL	TOTAL	
MONTH	DegHrs	DegHrs	DegHrs	
Jan	22	899	922	
Feb	91	432	523	
Mar	815	48	863	
Apr	1640 0 1640			
May	2066 0 2066			
Jun	1005	0	1005	
Jul	298	0	298	
Aug	148	0	148	
Sep	296 0 296			
Oct	321 4 325			
Nov	103	416	519	
Dec	12	1048	1060	
TOTAL	6817	2847	9664	

From table 5, 6, 7 and 8 it can be seen that the EPE insulation has proved to be effective in reducing the total discomfort degree hours up to 8.01%, 9.75%, 9.45% and 9.29% for insulation widths of 50 mm, 100 mm, 150 mm and 200 mm respectively. This reduction the total discomfort degree hours includes the considerable amount of reduction in too hot degree hours which is maximum with 13.08% which is for 50 mm insulation width. While the too cool degree hours reduction is maximum for 200 mm width i.e 5.47. If only the too hot degree hours are to be considered as in Pune (lat. 18.5° long. 73.8°) region the discomfort level is mostly due to too hot degree hours the width of 50 mm can be considered most efficient in case EPE is used for insulating the cavity.

For cavity filled with EPS insulation, following results b. were obtained-

Graph 7-DDH for EPS insulation of 50 mm width Table 9- DDH for EPS insulation of 50 mm width

DISCOMFORT DEGREE HOURS					
	Zone: Zone 1				
Zone is not air-conditioned.					
Occupancy: Weekdays 00-24, Weekends 00-24.					
Cor	Comfort: Band = 22.0 - 26.0 C				
	TOO HOT	TOO COOL	TOTAL		
MONTH	DegHrs	DegHrs	DegHrs		
Jan	19	920	939		
Feb	84	445	529		
Mar	798	53	850		
Apr	1613	0	1613		
Мау	2040	0	2040		
Jun	988	0	988		
Jul	288	0	288		
Aug	141	0	141		
Sep	287	0	287		
Oct	310	4	314		
Nov	97	427	524		
Dec	9	1070	1079		
TOTAL	6674	2919	9593		

Graph 8-DDH for EPS insulation of 100 mm width

Table 10- DDH for EPS insulation of 100 mm width

DISCOMFORT DEGREE HOURS			
Zone: Zone 1			
Zone is not air-conditioned.			
Occupancy: Weekdays 00-24, Weekends 00-24.			
Comfort: Band = 22.0 - 26.0 C			
	TOO HOT	TOO COOL	TOTAL
MONTH	DegHrs	DegHrs	DegHrs
Jan	20	904	925
Feb	86	435	521
Mar	807	49	856
Apr	1630	0	1630
May	2058	0	2058
Jun	1000	0	1000
Jul	294	0	294
Aug	145	0	145
Sep	292	0	292
Oct	316	4	320
Nov	100	419	518
Dec	10	1054	1064
TOTAL	6758	2865	9623

Graph 9-DDH for EPS insulation of 150 mm width Table 11- DDH for EPS insulation of 150 mm width

DISCOMFORT DEGREE HOURS			
Zone: Zone 1			
Zone is not air-conditioned.			
Occupancy: Weekdays 00-24, Weekends 00-			
Comfort: Band = 22.0 - 26.0 C			
	TOO HOT	TOO COOL	TOTAL
MONTH	DegHrs	DegHrs	DegHrs

	l l		
Jan	21	897	918
Feb	88	430	518
Mar	811	47	859
Apr	1638	0	1638
May	2066	0	2066
Jun	1006	0	1006
Jul	298	0	298
Aug	147	0	147
Sep	294	0	294
Oct	319	4	323
Nov	101	415	516
Dec	11	1047	1057
TOTAL	6800	2840	9640

Graph 10- DDH for EPS insulation of 200 mm width Table 12- DDH for EPS insulation of 200 mm width

DISCOMFORT DEGREE HOURS			
Zone: Zone 1			
Zone is not air-conditioned.			
Occupancy: Weekdays 00-24, Weekends 00-24.			
Cor	nfort: Band =	22.0 - 26.0	С
		TOO	
	TOO HOT	COOL	TOTAL
MONTH	DegHrs	DegHrs	DegHrs
Jan	21	894	915
Feb	88	427	516
Mar	814	47	861
Apr	1642	0	1642
May	2071	0	2071
Jun	1009	0	1009
Jul	300	0	300
Aug	148	0	148
Sep	296	0	296
Oct	321	4	325

5.

Nov	102	413	515
Dec	11	1043	1054
TOTAL	6823	2828	9651

IRIET

3.

The table 9, 10, 11 and 12 show the results obtained from the analysis when cavity was filled with EPS insulation with 50 mm, 100 mm, 150 mm and 200 mm. The reduction in total discomfort degree hours observed are 9.95 %, 9.67%, 9.57% and 9.41% at the widths of 50 mm, 100 mm, 150 mm and 200 mm respectively. Maximum reduction observed in too hot discomfort degree hours was 12.66% at the width of 50 mm of EPS in the cavity while that of too cool discomfort degree hours was 6.1% at the width of 200 mm. Thus it can be said that 50 mm width is efficient in reducing the discomfort as Pune (lat. 18.5° long. 73.8°) region felt maximum discomfort due to too hot degree hours.

- 1. Incr ease in the width of air cavity in the cavity walls does not affect the heat transfer rather keeps it constant.
- 2. For building envelope the width of cavity must be minimum as possible from the view of ease of construction.
 - Ins ulation material can be opted for use instead of relying on air cavity for reducing the discomfort level inside the building.

Graph 11-Percentage reduction in Too Hot **Discomfort Degree Hours**

4. As in case of Pune (lat. 18.5° long. 73.8°), India region, the increased discomfort level is due to too hot discomfort degree hours, and maximum reduction in too hot DDH is observed for the width of 50 mm for air (minimum possible width) and insulation materials like EPE and EPS.

Results can be obtained for various other climatic zones in India. The Ecotect Analysis 2011 building simulation tool can be used for thermal analysis for use of materials in building envelope.

- RE **FERENCES**
- 1. Abh ijeet Kamble et al., "Experimental Analysis of Cavity walls with Burnt brick for Building Envelope", International Research Journal of Engineering and Technology, Vol. 2, Issue 3, June 2015
- 2. Η. Hens et al., "Brick Cavity walls-A Performance Analysis based on Measurement and Simulation", Journal of Building Physics, vol.- 31 no. 2, October-2007
- 3. Nay ak J. K & Prajapati J. A., " Handbook of Energy Conscious Buildings", R&D Project no. 3 /4 (03)/ 99 SEC, May 2006 4. ASH
 - RAE fundamentals, ASHRAE Inc., Atlanta 1997
- S. E. 5. Patil & N. N. Shinde, " Theoretical Analysis of Composite roof with respect to Comfort in Building Envelope", Current Trends in Technology and Science, Vol. 3, Issue 3, May 2014 6. Ma
 - ni A., Handbook of solar radiation data of India, Allied Publishers, New Delhi, 1981.
- 7. R. Kapoor et al., Strategy roadmap for net zero energy building in India, USAID ECO II project, International Resources Group, New Delhi, August 2011
- 8. Sibe rstien and H. Hens, "Effect of Air and Moisture flow on Thermal Performance of Insulation in Ventilated roofs and walls", Journal of Building Physics, 1996. 9. Del
- ghust and A. Jannsens, "Retrofit Cavity wall Insulation: Performance Analysis from In-situ measurement".
- Stra 10. ube and Burnett, "Field testing of Filled Cavity Wall System".
- 11. FL Hassan Ridouane and Marcus Bianchi, "Thermal Performance of Uninsulated and Partially Filled Wall Cavities", ASHRAE Annual Conference, Montreal, 2011.