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Abstract- We present ANSYS based Optimality Criterion 
approach for topology optimization of beam and ring 
type structures. Optimality Criterion is to be very 
efficient for solving the topology optimization problem. 
The optimization problem is formulated as to minimize 
the material compliance under volume constraints. Two 
linear elastic isotropic structures have been studied. 
These structures have been studied by using finite 
element solver software ANSYS. ANSYS employs topology 
optimization using the Solid Isotropic Material with 
Penalization (SIMP) scheme for the penalization of the 
intermediate design variables and the Optimality 
criterion for updating the design variables. All the 
structures have been optimized for minimum 
compliance and then other parameters like-stresses, 
displacement in x-y directions, von misses stress, 
deformed and un-deformed shapes are obtained. 
Further the structures have been studied by changing 
material from isotropic to orthotropic and then the 
results obtained by both the materials have compared.  
 
Keywords: ANSYS, Optimality criterion approach, 
Compliance 
 
1. INTRODUCTION 
In the present scenario, topology optimization is the most 
important structural optimization which gives the best 
distribution of material at the conceptual level. In topology 
optimization the optimal layouts are generated 
automatically to solve the design problems in the field of 
engineering. Optimization is the process of finding for 
feasible solution in a problem until no other best suitable 
solution can be found. In general, optimization is the 
process of minimization or maximization of an objective 
function subjected to given constraints (stress, deflection 
etc.) for the problem to be solved. In optimization, all the 
results obtained by all the candidates are compared and 
the best optimum result is obtained.  
Topology optimization is concerned with seeking the 
optimum distribution of material in a given design domain 

that minimizes a given cost function while satisfies a series 
of constraints [1].  
There are many topological optimization methods have 
been developed some of which are homogenization 
method, evolutionary structural optimization (ESO) 
method, solid isotropic method with penalization (SIMP) 
and other methods. In topology optimization there are 
mainly two types of regions, one is solid other is void. Solid 
region means the region with material and the void region 
means the region without material. Topology optimization 
gives the best suitable use of material over the structure or 
body such that an objective function (i.e. is to be 
maximized or minimized) subjected to given constraint 
should be satisfied. 

The development of topological optimization can be 
attributed to Bendsoe and Kikuchi [2]. They assumed that 
the structure is formed by a set of non-homogenous 
elements which are composed of solid and void regions. 
They obtained optimal design under volume constraint 
through optimization process. This method requires a 
large amount of variables. To overcome this difficulty 
Bendsøe [9] introduces a solid isotropic material 
penalization. Suzuki et al. [3] studied the shape and 
topology optimization of linearly elastic material. Author 
done some modifications in the homogenization method 
and also clarified the strength of the present approach for 
plane structure. An evolutionary structural optimization 
(ESO) technique introduced by Xie et al. [7] in which 
material are gradually introduced or removed until the 
best condition is met. But once the material is removed it is 
not introduced again in the structure and this is the 
drawback of ESO technique. This difficulty was overcome 
by bi-directional evolutionary structural optimization 
(BESO) introduced by Querin et al.[8]. Many approaches 
have been studied to solve numerical instability. Further 
genetic algorithm, optimality criteria, adaptive refinement 
approach etc. have been developed by many researchers.  

The present work is based on ANSYS based Optimality 
Criterion method. In this work, the minimization of 
compliance of the structures has been studied for both the 
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isotropic and orthotropic material structures and then the 
results obtained by both the material have been compared. 

 
2. THE OPTIMALITY CRITERION APPROACH 

Optimality criteria are necessary conditions for 
minimality of the objective function and these can be 
derived by using either variational methods or extremum 
principles of mechanics. Optimality criteria (OC) method 
was analytically formulated by Prager and co-workers in 
1960. It was later developed numerically and become a 
widely accepted structural optimization method (Venkaya 
et al. 1968). 
The discrete topology optimization problem is 
characterized by a large number of design variables, N in 
this case. It is therefore common to use iterative 
optimization techniques to solve this problem, e.g. the 
method of moving asymptotes optimality criteria (OC) 
method, to name two. Here we choose the latter. At each 
iteration of the OC method, the design variables are 
updated using a heuristic scheme. 
The Lagrangian for the optimization problem is defined as: 

 
Where, , , , and  are Lagrange multipliers for the 

various constraints. The optimality condition is given by:  
 

 
 
Now, Compliance, 
 

 
 
Differentiating eq. 3.8 w. r. t. , the optimality condition 

can be written as: 
 

 
 
The Compliance sensitivity can be evaluated as using eq. :  
 

 
 
Based on these expressions, the design variables are 
updated as follows: 
 
 

 

 

 
 
 

 
Where,  is called the move limit and represents the 

maximum allowable change in  in a single OC iteration. 

Also,  is a numerical damping coefficient, and is usually 

taken to be . The Lagrange multiplier for the volume 

constraint , is determined at each OC iteration using a 

bisection algorithm.  is the value of the density variable 

at each iteration step.  is the displacement field at each 

iteration step determined from the equilibrium equations. 
 

3. NUMERICAL EXAMPLES 
In this section two example of optimization with pressure 
load and two example of optimization with point load are 
given. In these examples, all the four structures were 
solved by taking different isotropic properties for all the 
structures like, Young’s modulus and Poisson’s ratio and 
then all the four structures were solved for orthotropic 
material by taking Young’s modulus 201GPa, 21.7GPa, 
21.7GPa, Poisson’s ratio 0.17 respectively and shear 
modulus 5.4GPa in all the direction respectively. For all the 
examples, volume usage fraction is 50% and a fixed mesh 
of 8-node quadrilateral element is used, the thickness of 
the structures is 1 mm and the convergence criteria are 
taken 0.0001. 
 
 

3.1 Example 1 
An overhanging beam of dimensions in the ratio of 6:1 is 
considered. The beam is subjected to pressure load of 200 
N/mm and the geometry is shown in the Fig.1.1. Young’s 
modulus is 200 GPa and Poisson’s ratio is 0.29. The design 
domain is descretized into 7500 elements. The optimal 
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solution obtained by proposed method is presented in 
Fig.1.2 (a) and (b).  There is no checkerboard problem in 
the solution. The iteration histories for 50% volume 
fraction are presented in Fig. 1.3. The objective function 
decreases steadily and converges to 48.204 after 32 
iterations for isotropic material and 48.798after 37 
iterations for orthotropic material. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1.1 Geometry and boundary condition of overhanging 

beam 

 
(a) 

 
                                        (b)        

Fig. 1.2 Optimized shape for (a) Isotropic material 
 (b) Orthotropic material 

 

 
(a) 

 

 
(b) 

Fig. 1.3 Compliance v/s Iteration for overhanging beam (a) 
Isotropic (b) Orthotropic 

 
After obtaining compliance and optimal shape we have 
obtained von misses stress. At the point of loading 
maximum stress occurred. Optimized structures for both 
the materials with von misses stress have shown in the 
Fig.1.4 (a) and (b) respectively. Maximum stress for 
isotropic material is 20814N/mm2 and for orthotropic 
material is 12299N/mm2. Now the deformed and un-
deformed (initial structure) shape is shown in the Fig.1.5 
(a) and (b) respectively below. The black portion shows 
the un-deformed structure and the blue portion shows the 
deformed structure of the beam. 

 

 
(a) 

 
                                                  (b) 

Fig. 1.4 Von misses stress induced in structure for  
(a) Isotropic (b) Orthotropic 

 

6mm 

 

1mm 

200 N/mm 



          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

               Volume: 02 Issue: 04 | July-2015           www.irjet.net                                                      p-ISSN: 2395-0072 

 

© 2015, IRJET.NET- All Rights Reserved  Page 1685 
 
 

 
(a) 

 

 
(b) 

Fig. 1.5 Deformed and un-deformed shape obtained for 
 (a) Isotropic (b) Orthotropic 

 
3.2 Example 2 
A half ring of 10 mm outer and 3 mm inner radius is 
considered. The ring is subjected to pressure load of 1 
N/mm and the geometry is shown in the Fig.1.6. Young’s 
modulus is 1000 Pa and Poisson’s ratio is 0.3. The design 
domain is descretized into 7381 elements. The optimal 
solution obtained by proposed method is presented in 
Fig.1.7 (a) and (b) respectively.  There is no checkerboard 
problem in the solution. The iteration histories for 50% 
volume fraction are presented in Fig. 1.8 (a) and (b) 
respectively. The objective function decreases steadily and 
converges to 3.8219 after 31 iterations for isotropic 
material and 0.01899 after 34 iterations for orthotropic 
material. 

 
 
 
 
 
 
 
 
 
 

Fig.1.6 Geometry and boundary condition of overhanging 
beam 

 

 

(a) 
 

 
(b) 

Fig. 1.7 Optimized shape for (a) Isotropic material (b) 
Orthotropic material 

 

 
(a) 

 

 
(b) 

Fig. 1.8 Compliance v/s Iteration for Half ring (a) Isotropic 
(b) Orthotropic 

 
After obtaining compliance and optimal shape we have 
obtained von misses stress. Near the boundary condition 
maximum stress occurred. Optimized structures for both 
the materials with von misses stress have shown in the 
Fig.1.9 (a) and (b) respectively. Maximum stress for 
isotropic material is 34.338 N/mm2 and for orthotropic 
material is 13.273 N/mm2. Now the deformed and un-

R=10mm

mmm 

r=3mm 

1 N/mm 
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deformed (initial structure) shape is shown in the Fig. 2 (a) 
and (b) respectively. The black portion shows the un-
deformed structure and the blue portion shows the 
deformed structure of the beam. 

 
(a) 

 

 
(b) 

Fig.1.9 Von misses stress induced in structure for  
(a) Isotropic (b) Orthotropic 

 

 
(a) 

 

 
(b) 

Fig. 2 Deformed and un-deformed shape obtained for  
(a) Isotropic (b) Orthotropic 

 

3.3 Example 3 
A Messerschmitt Bolkow Blohm (MBB) beam is 
considered. The beam is subjected to point load of 1 N and 
the geometry is shown in the Fig.2.1 Young’s modulus is 

100 Pa and Poisson’s ratio is 0.3. The design domain is 
descretized into 1281 elements. The optimal solution 
obtained by proposed method is presented in Fig.2.2 (a) 
and (b) respectively.  The iteration histories for 50% 
volume fraction are presented in Fig. 2.3 (a) and (b) 
respectively. The objective function decreases steadily and 
converges to 0.74065 after 39 iterations for isotropic 
material and 0.00036629 after 37 iterations for 
orthotropic material. 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.2.1 Geometry and boundary condition of overhanging 

beam 

 
(a) 

 

 
(b) 

Fig. 2.2 Optimized shape for (a) Isotropic material (b) 
Orthotropic material 

 

20 mm 

120mm 

1 N 
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(a) 

 

 
(b) 

Fig. 2.3 Compliance v/s Iteration for MBB (a) Isotropic  
(b) Orthotropic 

Now the von misses stress have calculated. At the point of 
loading maximum stress occurred. Optimized structures 
for both the materials with von misses stress have shown 
in the Fig.2.4 (a) and (b) respectively. Maximum stress for 
isotropic material is 2.351 N/mm2 and for orthotropic 
material is 0.86758 N/mm2. Now the deformed and un-
deformed (initial structure) shape is shown in the Fig. 2.5 
(a) and (b) respectively. The black portion shows the un-
deformed structure and the blue portion shows the 
deformed structure of the beam. 
 

 
(a) 

 

 
(b) 

Fig. 2.4 Von misses stress induced in structure for 
 (a) Isotropic (b) Orthotropic 

 

 
(a) 

 

 
(b) 

Fig. 2.5 Deformed and un-deformed shape obtained for (a) 
isotropic (b) orthotropic 

 

3.4 Example 4 
A Cantilever beam of dimension 45mm x 30mm is 
considered. The beam is subjected to point load of 1 N and 
the geometry is shown in the Fig.2.6.  Young’s modulus is 
100 Pa and Poisson’s ratio is 0.3. The optimal solution 
obtained by proposed method is presented in Fig.2.7 (a) 
and (b) respectively. The design domain is descretized into 
3521 elements. The iteration histories for 50% volume 
fraction are presented in Fig. 2.8 (a) and (b) respectively. 
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Fig.2.6 Geometry and boundary condition of overhanging 
beam 

 

 

(a) 

 

(b) 

Fig. 2.7 Optimized shape for (a) Isotropic material 
 (b) Orthotropic material 

 

 

(a) 

 

(b) 

Fig. 2.8 Compliance v/s Iteration for MBB (a) Isotropic  
(b) Orthotropic 

 
The objective function decreases steadily and converges to 
0.11335 after 14 iterations for isotropic material and 
0.54588x10-4 after 14 iterations for orthotropic material. 
Now the von misses stress have calculated. Near the point 
of loading maximum stress occurred. Optimized structures 
for both the materials with von misses stress have shown 
in the Fig.2.9 (a) and (b) respectively. Maximum stress for 
isotropic material is 2.351 N/mm2 and for orthotropic 
material is 0.86758 N/mm2. Now the deformed and un-
deformed (initial structure) shape is shown in the Fig. 3 (a) 
and (b) respectively. The black portion shows the un-
deformed structure and the blue portion shows the 
deformed structure of the beam. 
 

30 mm 7 mm 

45 mm 

1 N 
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(a) 

 

 
(b) 

Fig.  2.9. Von misses stress induced in structure for (a) 
isotropic (b) orthotropic 

 
 

 

(a) 

 

(b) 

Fig. 3 Deformed and un-deformed shape obtained for (a) 
isotropic (b) orthotropic 

 

4. EFFECT OF MESH SIZE/ NO. OF ELEMENTS 
ON COMPLIANCE AND TOPOLOGY OBTAINED 
 

4.1 FOR ISOTROPIC MATERIAL OVERHANGING 

BEAM WITH UDL 

In this section, effect of mesh size on the compliance and 
topology obtained has been studied for isotropic 
overhanging beam with UDL. The effect has been studied 
at the same volume fraction, load, Poisson’s ratio, 
thickness, Young’s modulus as taken in original model. To 
examine study the convergence characteristics of the OC in 
ANSYS, the compliance vs. Iteration plots for different 
number of elements have been plotted. The Table 1.1 
below shows mesh size and compliance values. 
 

Table 1.1: Variation of Compliance with number of 
elements 

 

Mesh size 

 

Compliance Iterations 

120, 20, 0.5 49.777 32 

130, 30, 0.5 48.866 31 

140, 40, 0.5 48.659 37 

150, 50, 0.5 48.204 32 

160, 60, 0.5 47.209 30 

 
For Overhanging with UDL values of compliance is 
decreasing as the number of elements are increasing. It is 
observed from Fig. 3.1 that the final optimal topology in 
each case is different and as the mesh size increases the 
optimal shape is much more finer then the previous one. It 
is observed that convergence rates are also random in 
nature for mesh size 120, 20 it takes 32 iterations to 
converge while it comes down to 31 iteration for mesh size 
130, 30 and for mesh size 140, 40 it increases to 37 and is 
again decreases to  32 and 30 iterations for mesh size 150, 
50 and 160, 60 respectively. The iteration histories for 
50% volume as shown in Fig. 3.2 
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Mesh size 120, 20      

 

Mesh size 130, 30 

 

Mesh size 140, 40 
 
 
 
 
 

                Mesh size 150, 50         

 
Mesh size 160, 60 

Fig. 3.1 Optimal topologies for different mesh densities for 
IM Model 5 (  

 

 
 

Fig. 3.2 Effect of number of elements on compliance and 
iterations for Isotropic material Model 5 

4.2 FOR ORTHOTROPIC MATERIAL 

OVERHANGING BEAM WITH UDL 

In this section, effect of mesh size on the compliance and 
topology obtained has been studied for Overhanging beam 

with UDL of orthotropic structures. The effect has been 
studied at the same volume fraction, Poisson’s ratio, 
Thickness, Young’s modulus. To examine study the 
convergence characteristics of the OC in ANSYS, the 
compliance vs. Iteration plots for different number of 
elements have been plotted.  

The Table 1.2 below shows mesh size and compliance 
values. 

Table 1.2: Variation of Compliance with number of 
elements for OM Model 5 

Mesh size 

 

Compliance Iterations 

120, 20, 0.5 49.596 25 

130, 30, 0.5 48.509 29 

140, 40, 0.5 48.651 28 

150, 50, 0.5 47.898 35 

160, 60, 0.5 48.513 30 

 
For Overhanging beam with UDL values of compliance is 
varying as the number of elements are increasing. Here the 
value of compliance increases from 49.596 N-mm again it 
decreases to 48.509 N-mm and then increases to 48.651 N-
mm and further decreases to 47.898 N-mm and then 
increases to 48.513N-mm. It is observed from Fig.3.3 that 
the final optimal topology in each case is different and as 
the elements number is increased the optimal shape is 
much more finer then the previous one. It is observed that 
convergence rates are also random in nature for mesh size 
120, 20 it takes 25 iterations to converge while it comes 
down to 29 iteration for mesh size 130, 30 and is again 
increased to  35 and 30 iterations for mesh size 150, 50 
and 160, 60 respectively. The iteration histories for 50% 
volume as shown in Fig. 3.4 

 

Mesh size 120, 20           
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Mesh size 130, 30 

 
Mesh size 140, 40 

 
Mesh size 150, 50    

 
Mesh size 160, 60 

 
Fig. 3.3 Optimal topologies for different mesh densities for 

Orthotropic material Model 5 (  

 

 
Fig. 3.4 Effect of number of elements on compliance and 

iterations for Orthotropic material Model 5 
 

CONCLUSION 
In the present paper, the topology optimization of 
structures which are subjected to pressure load and point 
load is solved by using an optimality criterion approach. 
Minimum compliance problem for optimization is 
considered. In this work, a commercially available finite 
element solver ANSYS 12.0 has been used to determine the 
optimal topology of the structures. The procedure is 

applied to a number of design problems. In all the cases, it 
is concluded that overall compliance decreases from initial 
to final value. The comparison of two materials shows that 
orthotropic materials structures have less compliance 
value than isotropic material structures in all the cases and 
that is why have stiffer structures. Von misses stresses are 
also less in orthotropic material structures than isotropic 
material structures. Compliance values decreases as the 
number of iterations increases for every model. As is 
evident from these plots, most of the compliance is 
dropped in the earlier iterations. Later on there is little 
variation in the compliance values.  
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