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Abstract - A one-dimensional problem for a 

homogeneous and isotropic thermoelastic infinite 

porous material under the dependence of modulus of 

elasticity and thermal conductivity on reference 

temperature subjected to a periodically varying heat 

sources is considered in the context of the fractional 

order generalized thermoelasticity with one relaxation 

time parameter. The Laplace transform together with 

an eigenvalue approach technique is used to find the 

solution for the physical variables in the transform 

domain. The transformed solutions are inverted using 

the Zakian algorithm. The effect of the fractional 

parameter, the dependence of modulus of elasticity and 

the time on the temperature field, the volume fraction 

field, the displacement field and the stress field have 

been evaluated and presented graphically and the 

results obtained are analyzed. A comparison is made 

with the results obtained in case of reference 

temperature independent modulus of elasticity. 
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1. INTRODUCTION 
At high temperature the material characteristics such as 
the modulus of elasticity, the Poisson’s ratio and the 
thermal conductivity are no longer constants [1]. In the 
literatures [2–8], one can find some investigations with 
varying material properties using various generalized 
thermoelastic model. 
 
The formation of one-dimensional porous material will 
help researchers in the field of material chemistry for 
developing one-dimensional nano-composites for 
applications in pharmaceutical technology and also in 
environmental chemistry. A nanosized highly luminescent 
LaPo4 : Ce3+, T b3+ is nowadays one of the important 
material for biomedical applications such as fluorescence 
resonance energy-transfer assays, optical imaging, etc. A 

new mesoporous hybrid titanium (IV) phosphonate 
nanomaterial has been synthesized by using Benzene-
1,3,5-triphosphonic acid as the organophosphorus source 
in the absence of any template molecule [4].  
 
In the purpose of the mathematical study of the 
mechanical behavior of porous materials, Cowin and 
Nunziato [9] established a theory of linear elastic 
materials with voids. Later, Iesan [10] formulated a linear 
theory for thermoelastic materials with voids. He derived 
the basic equations and studied the uniqueness of 
solution, reciprocity theorem and the variational principle 
of this theory. A large number of problems for one-
dimensional thermoelastic porus material were studied by 
many authors and they have been appeared in the 
literatures [11–22]. 
 
During recent years, several interesting models have been 
developed by using fractional calculus to study the 
physical processes particularly in the area of heat 
conduction, diffusion, mechanics of solids, electricity, etc. 
Fractional calculus has been used successfully to modify 
many existing models of physical processes. Various type 
definitions and approaches of fractional order derivatives 
have become the main aim of many researchers. Youssef 
[23] established the fractional order generalized 
thermoelasticity in the context of generalized 
thermoelasticity with one relaxation time. Ezzat and 
Karamany [24, 25] established a new model of fractional 
heat equation based on a Taylor’s seies expansion of time-
fractional order. Sherief et al. [26] also established a new 
model by using Lord-Shulaman model [31] of generalized 
thermoelasticity. Recently, a new formula of heat 
conduction has been considered in the context of the 
Riemann-Liouville fractional integral operator and Green-
Lindsay model of generalized thermoelasticity for porous 
materials by Bachher et al. [21]. This new consideration 
generated the fractional order generalized 
thermoelasticity for porous material. Bachher et al. [22] 
also studied fractional order thermoelastic interactions in 
an infinite voids material due to distributed time-
dependent heat sources. Abbas [27] applied eigenvalue 
approach to study fractional order generalized 
magnetothermoelastic interactions due to a moving heat 
source. Among the other works devoted to applications of 
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fractional calculus to thermoelasticity, we can refer to the 
works of Povstenko [28, 29], who introduced a fractional 
heat conduction law, found the associated thermal 
stresses. In the present research, we consider a problem 
for a homogeneous and isotropic thermoelastic infinite 
porous material under the dependence of modulus of 
elasticity and thermal conductivity on reference 
temperature subjected to a periodically varying heat 
sources, distributed over the plane x = 0 in the context of 
the fractional order model of generalized thermoelasticity 
with one relation time parameter. The Laplace transform 
together with eigenvalue approach technique [21] is 
applied to find the solution for the physical variables in 
the Laplace transform domain. The transformed solutions 
are inverted using the Zakian algorithm [30] for the 
inversion of Laplace transform. The effect of the fractional 
parameter, the dependence of modulus of elasticity and 
the time on the field variables have been presented 
graphically and the results obtained are analyzed. A 
comparison is made with the results obtained in case of 
reference temperature independent modulus of elasticity.  
 

2. BASIC EQUATIONS AND FORMULATION OF THE 
PROBLEM 

Following Iesan [10] and Lord & Shulman [31], the 
governing equations for a homogeneous isotropic 
thermoelastic porous material can be written in the 
following form: 
 
The constitutive equations are: 
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 Fourier’s law in the theory of generalized fractional heat 
conduction is taken from [25] as:   
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The energy equation in the presence of heat sources has 
the form:                                                        

0 , , (6)i iT q Q      

The equations of motion in the absence of body forces: 

, , (7)ij j iu    

 
The equations of equilibrated forces are: 
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where 
ij are the components of the stress tensor, 

ije  are 

the components of strain tensor, 
ih  are the components of 

equilibrated stress tensor,   is the volume fraction field, 

  is the density,   is the entropy per unit mass, g  is the 

intrinsic equilibrated body force, b  is the measure of 
diffusion effects, , ,m  are void material parameters, 

iq are the components of heat flux vector, k  is the 

coefficient of thermal conductivity, 
0 ,T T T   is the 

absolute temperature, 
0T  is the temperature of the 

medium in its natural state assumed to be such that 

0| / | 1T  , l  is the extrinsic equilibrated force,   is the 

equilibrated inertia, ,   are Lame’s constants, 

(3 2 ) t     , 
t  is the coefficient of linear thermal 

expansion, 
ij is the Kronecker delta, 

iu are the 

components of the displacement vector, 
EC  is the specific 

heat at constant strain, 
0  is the  relaxation time 

parameters, Q  is the intensity of the applied heat sources, 

and 
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In the above definition, I is the Riemann–Liouville 
fractional integral operator defined as 
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where (...) is the well-known Gamma function. A 

superposed dot represents differentiation with respect to 
time variable t , and a comma followed by a suffix denotes 
material derivative and , , ,i j x y z referee to a general 

coordinates. 
 
For a homogeneous isotropic generalized thermoelastic 
porous material, the governing field equations in terms of 
the displacement, the volume fraction field and the 
temperature field subjected to a distributed time-
dependent continuous heat sources in the absence of body 
forces and the extrinsic equilibrated body forces can be 
obtained from Eqs. (1)-(9) as: 
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The homogeneous isotropic infinite porous thermoelastic 
solid body is unstrained and unstressed initially but has a 
uniform temperature distribution

0T . Let 0x  represents 

the plane area over which the applied heat sources Q  is 

situated and the solid occupies the infinite space 
x    . Due to the symmetry of the problem, all the 

field quantities depend only on x  and t  and thus for one-

dimensional case, the displacement vector 
iu  will have the 

components
1 2 3( , ), 0, 0u u x t u u   . Thus from Eqs. (9)-

(12) we can write: 
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For temperature dependent material properties we may 
suppose that [32] 
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where 

0 0 0 0 0 0 0 0 0, , , , , , , ,b K m      are constants and 

( )f T  is a given non-dimensional function of temperature. 

In case of a temperature independent modulus of 
elasticity, ( ) 1f T  . In generalized thermoelasticity as well 

as in the coupled theory only the infinitesimal 
temperature deviations from the reference temperature 

0T  are considered. Therefore we may consider ( )f T  in the 

form *

0( ) (1 )f T T   [32] where * 1[ ]K   is an empirical 

material constant. In the case of the reference temperature 
independent modulus of elasticity and thermal 

conductivity, * 0  . 

 
Under the above assumption, Eqs. (13)-(16) become 
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To transform Eqs. (18)-(21) in non-dimensional forms we 
will use the following non-dimensional variables 
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After using these non-dimensional variables, Eqs. (18)-
(21) take the following forms (omitting the primes for 
convenience): 
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For periodically varying heat sources distributed over the 
plane area x = 0 we may represent it as 
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where 
0Q  is a constant and ( )x  is the Dirac’s delta 

function defined by: 
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3. SOLUTION IN THE LAPLACE TRANSFORM 
DOMAIN: EIGENVALUE APPROACH 

Taking the Laplace transform of parameter s defined by 
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on both sides of the Eqs. (22)-(25) (assuming the 
homogeneous initial conditions) we get 
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Following Bachher et al. [21], Eqs. (27)-(29) can be 
written in a vector-matrix differential equation as follows: 
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Using the solution methodology through eigenvalue 
approach discussed in Bachher et al. [22] the solutions for 

( , ), ( , )and ( . )u x s x s x s  bounded as x  in the Laplace 

transform domain can be obtained as: 
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The stress component ( , )xx x s  can now be determined 

using the Eqs. (32)-(34) in the Eq. (30). 
 

4. NUMERICAL RESULTS AND DISSCUSSIONS 

To illustrate and compare the theoretical results obtained 
in Section 3, we now present some numerical results 
which depict the variations of the temperature, the volume 
fraction field, the displacement and the stress component. 
For this purpose, we choose magnesium crystal as the 
hypothetical material for which the values of the different 
physical constants are: 
 

10 1 10 1

0 0 0

3 3 3 1 1

2 1 1 6 2 1

0 0

2.17 10 . , 3.278 10 . , 298 ,

2.17 10 . , 1.04 10 . .deg ,

1.7 10 . .deg , 2.68 10 . . .deg .

E

N m N m T K

kg m C J kg

k W m N m

 





 

 

   

    

   

   

 

 
The void parameters are: 
 

15 2 10 2

0 0 0

10 2 6 2 1

0 0

1.753 10 , 3.688 , 1.475 10 . ,

1.13849 10 . , 2 10 . . .deg .

m N N m

b N m m N m

   

  

    

   
 

 
The non-dimensional relaxation time is 

0 0.02  s and 

other constants are taken as 
0 1, 1Q    s. 

 
Figs. 1-4 are drawn for a non-dimensional particular time 

0.5t  and * 0.00025  . These figures exhibit the space 

variations of the field quantities in the context of reference 
temperature dependent generalized thermoelasticity for 
three different values of the fractional 
order 0.1,0.5,1.0  . The case 1.0  represents the Lord 

& Shulman model of generalized thermoelasticity. All 
these figures display that the maximum value of all the 
physical quantities attains on the boundary of the half-
space 0x  for 0.1  . We also observe that all the series 

approach to zero as x  increases further. From Fig. 2 and 3 

it is observed that the fractional parameter   has a 
decreasing effect on the magnitude of   and   in the 

range 0 0.39x  and   has increasing effect for 0.4x   

while Fig. 3 and 4 show that   has a decreasing effect on 

the magnitude of u  and 
xx for 0 0 0.6x  and then   

acts to increase the numerical value of u  and 
xx . This 

type of behavior of all the field variables can be noticed 
due to presence of the periodically varying heat sources 
distributed over the plane area 0x  . 
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Fig-1: Temperature ( )  distribution against x  at            

* 0.00025, 0.5.t    

 
 
 
 
 
 
Fig -2: Temperature ( )  distribution against x  at            

* 0.00025, 0.5.t    

 
 
 
 
 
 
 
 
Fig -2: Volume fraction field ( )  distribution against x  at            

* 0.00025, 0.5.t    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig-3: Displacement ( )u  distribution against x  at            

* 0.00025, 0.5.t    

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig-4: Stress ( )xx  distribution against x  at            

* 0.00025, 0.5.t    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig-5: Temperature ( )  distribution against x  at            

0.5, 0.5.t    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig -6: Volume fraction field ( )  distribution against x  at            

0.5, 0.5.t    
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Fig-7: Displacement ( )u  distribution against x  at            

0.5, 0.5.t    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig-8: Stress ( )xx  distribution against x  at            

0.5, 0.5.t    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig-9: Temperature ( )  distribution against x  at            

*0.5, 0.00025.    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig -10: Volume fraction field ( )  distribution against x   

at *0.5, 0.00025.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig-11: Displacement ( )u  distribution against x  at            

*0.5, 0.00025.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig-12: Stress ( )xx  distribution against x  at            

*0.5, 0.00025.    
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The second set of Figs. 5-8 display the variations of 
, , and xxu    at 0.5, 0.5t   for three different value of 
* 0.0,0.00025,0.00051  within 0 2x  .The ase * 0.0     

represents the temperature independent modulus of 
elasticity. From all of these four figures it is observed that 
all the field variables exhibits its greater magnitude for 

* 0.00051  at the boundary 0x  except the stress 

component 
xx which attains its maximum value for 

* 0.0  at 0x  . 

 
Figs. 9-12 display the temperature, the volume fraction 
field, the displacement, and the stress distribution within a 

wide range of  0 4x x   for *0.5, 0.00025   for 

different values of the time parameter 0.3,0.4,0.5t  and 

we have noticed that the time parameter t  play a 

significant role on all the studied fields. The increasing of 
the value of t causes increasing of the values of all the 

studied fields and makes the speed of the waves 
propagation vanishes more rapidly. 
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