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Abstract - A new mathematical model for Pennes’ 

bio-heat equation using the methodology of 

Riemann-Liouville fractional integral was 

constructed. In this novel model, the fractional 

parameter   is an indicator of bio-heat efficiency in 

living tissues. 
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1. INTRODUCTION 
Fractional calculus have been applied successfully to 

study the physical processes particularly in the area of 

mechanics of solids, control theory, biomedical 

engineering, heat conduction, diffusion problems and 

viscoelasticity etc. It has been verified/examined that 

the use of fractional order derivatives/integrals leads 

to the formulation of certain physical problems which 

is more economical and useful than the classical 

approach. There are some materials (e.g., porous 

materials, man-made and biological 

materials/polymers and colloids, glassy etc.) and 

physical situations (like low-temperature, amorphous 

media and transient loading etc.) where the classical 

Fourier’s law, which specifies a linear relationship 

between heat flux q


 and temperature gradient as 

follows                                                                                  

( , ) ( , ),q x t k T x t  


                                                         (1) 

where ( , )T x t is the temperature at a point x  and k  is 

the thermal conductivity is unsuitable. Recently, a 

considerable research effort has been expended to 

study anomalous diffusion, which is characterized by 

the time-fractional diffusion-wave equation by 

Kimmich [1]  

, ,iic I c                                                                         (2) 

where   is the mass density, c  is the concentration,   

is the diffusion conductivity, i  is the coordinate 

symbol, which takes the values 1, 2, and 3, the subscript 

“,” means the derivative with respect to xi, and notion 

I  is the Riemann-Liouville fractional integral is 

introduced as a natural generalization of the well-

known n -fold repeated integral Inf(t) written in a 

convolution-type form as in Refs. [2,3]. 
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where (...) is the Gamma function. 

 

It should be noted that the term diffusion is often used 

in a more generalized sense including various transport 

phenomena. Equation (1) is a mathematical model of a 

wide range of important physical phenomena, for 

example, the sub-diffusive transport occurs in widely 

different systems ranging from dielectrics and 

semiconductors through polymers to fractals, glasses, 

porous, and random media.  

 

Super-diffusion is comparatively rare and has been 

observed in porous glasses, polymer chain, biological 

systems, transport of organic molecules and atomic 

clusters on surface [4]. One might expect the 

anomalous heat conduction in media where the 

anomalous diffusion is observed. 

 

Fujita [5, 6] considered the heat wave equation as follows: 

, , 1 2,iiCT kI T                                                    (3) 

where C is the specific heat. 

 

Equation (3) can be obtained as a consequence of the 

non local constitutive equation for the heat flux 

components 
iq  is in the form  

1

, , 1 2.i iq kI T                                                      (4) 

 

Povstenko [4] used the Caputo heat wave equation defined 

in the form 
1

, , 0 2.i iq kI T                                                        (5) 
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to get the stresses corresponding to the fundamental 

solution of a Cauchy problem for the fractional heat 

conduction equation in one-dimensional and two-

dimensional cases. Some applications of fractional 

calculus to various problems of mechanics of solids are 

reviewed in the literature [7, 8]. 

 

Abel is the first author, who applied fractional calculus 

to obtain the solution of an integral equation arising in 

the formulation of the tautochrone problem. After 

Abel’s study, great attention has been devoted to the 

major study of fractional calculus by Liouville. 

Fractional order derivatives have been employed for 

the description of viscoelastic materials by Caputo and 

Mainardi [9, 10] and Caputo [11] and they have 

established the connection between fractional 

derivatives and the linear theory of viscoelasticity. 

They also obtained a very good agreement with the 

experimental results successfully. In [12, 13], one can 

find many applications of fractional calculus to various 

problems of mechanics of solids. A considerable 

research effort has been extended to study anomalous 

diffusion that is characterized by the time-fractional 

diffusion wave equation introduced by Kimmich [1]. 

 

In the present article, a new mathematical model for 

Pennes’ bio-heat equation using the Riemann-Liouville 

fractional integral was constructed. In this novel 

theory, the fractional parameter   is an indicator of 

bio-heat efficiency in living tissues. 

 

2. DERIVATION OF FRACTIONAL BIO-HEAT 
TRANSFER EQUATION 

Heat transfer in biological systems is usually modelled 

by the Pennes’ bio-heat equation [7] based on the 

classical Fourier law (2) as 

                                                                

( , ) ,CT Q x t q   
                                          (6) 

where ( , )T x t  is the temperature of living tissue and 

( , )Q x t is the volumetric heat generated by metabolism 

and blood perfusion, given by:  

                                                                

 ( , ) ( , ) ,B B B mQ x t G C T T x t Q                                     (7) 

where 
BG  is the blood perfusion, 

BC  is the volumetric 

specific heat of blood, 
BT  is the artery temperature and 

mQ  is the metabolic heat source. A well-known 

problem with Fourier’s law is that  it yields infinitely 

fast propagation of thermal signal, incompatible with 

physical reality and  physiological considerations in a 

transient process. This equation implies an 

instantaneous thermal energy deposition in medium, 

i.e. any local temperature disturbance causes an 

instantaneous perturbation in temperature at each 

point in medium. Applying the concept of finite heat 

propagation velocity. 

 
As explained above, heat pulses obtained by the 

classical bio-heat conduction equation propagate at 

infinite speed. Much attention has been devoted to 

modifying the classical heat conduction equation  

to ensure finite speed pulse propagation. In 

mathematical terms, the governing partial differential 

equation is transformed from parabolic to hyperbolic 

type [8, 14]. A general form of bio-heat transfer in 

living tissues based on the generalized Fourier’s law 

[15] 

 

  
0 , ,i i iq q kT                                                                 (8) 

is given by: 

                         

0 0

2

( , ) ( , ) ( , ) ( , )

( , ).

C T x t T x t Q x t Q x t

k T x t

         

 

 
       (9) 

 

Now, a new formula of heat conduction will be 

considered taking into account considerations Eqs. (4), 

(5) and (8) in the following form [16] 

                                                               
1

0 , , 0 2,i i iq q kI T                                             (10) 

where I  is the Riemann-Liouville fractional integral 

operator.  

 

Taking divergence on both sides of the Eq. (10) and 

using Eq. (6) in the resulting equations, we obtain the 

following equation: 

                              

0 0

1 2

( , ) ( , ) ( , ) ( , )

( , ), 0 2.

C T x t T x t Q x t Q x t

kI T x t

  



       

   

 
       (11) 

 

Eq. (11) is the new time-fractional bio-heat transfer 

equation with fractional parameter , which includes 

the relaxation time parameter
0 . 
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  3. LIMITING CASES 
(i) The time-fractional bio-heat transfer Eq. (11) in the 

limiting case 
0 0  and 1  transforms to 

( , ) , ,iiCT Q x t kT                                                             (12) 

 

which is precisely the parabolic Pennes’ bio-heat transfer 

equation [7]. 

(ii) In the limiting case 
0 0  and 1  , the time-fractional 

bio-heat transfer Eq. (11) transforms to: 

0 0

2

( , ) ( , ) ( , ) ( , )

( , ),

C T x t T x t Q x t Q x t

k T x t

         

 

 
         13) 

which is precisely the hyperbolic Pennes’ bio-heat transfer 

equation [14]. 

 

  5. CONCLUTIONS 

 

The main goal of this work is to introduce a new 

mathematical model for the Pennes’ bio-heat transfer 

equation with Riemann-Liouville fractional integral. 

Fractional calculus was successfully incorporated into a 

bio-heat transfer model. In anattempt to reconcile the 

novel and classical approaches to bio-heat transfer, 

results of our model were compared with those of the 

classical and hyperbolic bio-heat transfer equations. 

The hyperbolic model of Cattaneo [8], Weymann [17] 

and Liu et al. [18] are special cases of this new time-

fractional bio-heat transfer Eq. (11). 
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