
          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 02 Issue: 04 | July-2015                     www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2015, IRJET.NET- All Rights Reserved  Page 1024 

HYBRID DATA ENCRYPTION STANDARD 
*1 Ms. Priya S, *2 Ms. Anita Madona M 

*1 M.Phil Research Scholar, Department of Computer Science Auxilium College (Autonomous), Vellore,  

TamilNadu, India 

*2 Assisant Professor, Department of Computer Science Auxilium College (Autonomous), Vellore,  
TamilNadu, India 

---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - Security is playing an important role 
in the field of network communication system. 
Cryptography is the branch of computer science that 
deals with hiding information for secure 
communication of data. It uses the codes to convert 
plain text into cipher text, so that only the intended 
recipient will be able to read it using the key. The 
cryptographic algorithms are mainly divided into two 
categories as Symmetric and Asymmetric on the basis 
of using the same or different key for encryption and 
decryption. The most popular and widely used 
symmetric-key system is the Data Encryption Standard 
(DES) in which both the sender and receiver use a 
shared secret key to encrypt or decrypt the data.  

DES is the block cipher which takes a fixed-
length string of plaintext bits and transforms it through 
a series of complicated operations into another cipher 
text bit string of the same length. The key basically 
consists of 64 bits however, only 56-bits of these are 
actually used by the algorithm. Eight bits are used 
solely for checking parity, and are thereafter discarded. 
Hence the effective key length is 56-bits. DES is now 
considered to be insecure for many applications. This is 
due to the 56-bit key size being too small which is not so 
powerful against the Brute force attack. 

To improve the security of DES algorithm and to 
avoid the Brute force attack, the substitution technique-
Affine Cipher is used to mask the plaintext and then 
pass it as input to the DES algorithm to perform 
encryption. This Affine Cipher is used before the 
original DES algorithm, to make cryptanalysis difficult 
and improve the security of DES. The Simulation tool 
NS-2 is used to compare and analyze the performance of 
DES and the Hybrid DES. 
 
Keyword:  DES – Data Encryption Standard, NS – Network 
Simulator, HDES – Hybrid Data Encryption Standard 

 
1. INTRODUCTION  

 

The most widely used Symmetry key 
cryptographic technique is DES. DES is the block cipher 
which takes a fixed-length string of plaintext bits and 
transforms it through a series of complicated operations 
into another cipher text bit string of the same length. It is a 

symmetric encryption technique which means both sender 
and receiver can use a shared key to encrypt and/or 
decrypt the data. The key basically consists of 64 bits 
however, only 56-bits of these are actually used by the 
algorithm. Eight bits are used solely for checking parity, 
and are thereafter discarded. Hence the effective key 
length is 56-bits. 

Nowadays, the parallel processor and advanced 
computer machines are discovered which can perform the 
computation and calculation at very high speed. Though 
DES is a very powerful algorithm, these machines can 
break DES. DES is now considered to be insecure for many 
applications. This is due to the 56-bit key size being too 
small and is not so powerful against the Brute force attack. 
A brute force attack against a cipher consists of breaking a 
cipher by trying all possible keys. Statistically, if the keys 
were originally chosen randomly, the plaintext will 
become available after about half of the possible keys are 
tried. For any cipher, the most basic method of attack is 
brute force i.e. trying every possible key in turn.  

Hence to improve the security of DES algorithm, 
the substitution technique- Affine Cipher is used to mask 
the plaintext and then pass it as input to the DES 
algorithm. Thus the input text is scrambled by means of 
Affine Cipher and made secured before given as input to 
the DES, to make cryptanalysis difficult. If this technique is 
used before the original DES algorithm then the intruder 
required to break the DES algorithm first and then the 
Affine Cipher. Thus Brute Force attack is made 
complicated. This method improves security in DES. So the 
security is approximately double as compared to a DES 
algorithm.    

 

2. HYBRID DATA ENCRYPTION STANDARD 

DES seems to be weak against the brute force 
attacks. To improve the security of DES algorithm, the 
substitution technique - Affine Cipher is added before the 
DES algorithm to mask the input to DES in order to 
improve the security of DES. The Affine Cipher is used to 
create the cipher text which is used as input text to the 
DES. The plaintext which is going to be give as input to the 
DES is masked by means of Affine Cipher.  
 

Thus the input text of the DES itself is cipher text, 
which is going to be act as a safe input to DES. Hence the 

http://www.webopedia.com/TERM/D/DES.html
http://www.webopedia.com/TERM/D/DES.html


          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 02 Issue: 04 | July-2015                     www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2015, IRJET.NET- All Rights Reserved  Page 1025 

security of the DES seems to be double when comparing to 
the DES algorithm. 
 

2.1 Encryption Process of HDES 

In HDES the plain text is given as input to Affine 
Cipher. The Affine Cipher is used to create the cipher text. 
The first step in the encryption process of Affine is to 
transform each of the letters in the plaintext alphabet to 
the corresponding integer in the range 0 to m-1, (i.e.) the 
encryption process for each letter is given by E(x) = 
(ax + b) mod m, where a and b are the key for the cipher 
text.  

This means that we multiply the integer value for 
the plaintext letter by a, and then add b to the result. 
Finally, we take this modulus m (i.e.) the remainder is 
taken as a solution to divided by m, or the length of the 
alphabet is taken until the number less than its length. The 
resultant masked/cipher text will be given as input to the 
DES. In DES, the plain text will be given as input but in 
HDES, the input text of the DES itself is cipher text. After 
giving the input to the DES, the DES performs its normal 
working function. 

 

 

 

 

 

      

 
 

Figure 2.1 Encryption Process of HDES 

 

 

2.2 Decryption Process of HDES 

Decryption uses the same algorithm as 
encryption, except that the sub keys K1, K2 …K16 are 
applied in reversed order. For decryption, the cipher text  
will be given as the inputs to the DES algorithm but use the 
keys Ki in reverse order. That is, K16 on the first iteration, 
K15 on the second until k1 which is used on the 16th and 
last iteration.  

After the last decryption process of the DES, the 
cipher text will be obtained. This cipher text should be 
entered into Affine Cipher for further decryption process 
in Affine. In deciphering the cipher text in Affine, the 
opposite (or inverse) functions has to be applied on the 
cipher text to retrieve the plaintext. The first step is to 
convert each of the cipher text letters into their integer 
values.  

We must now perform the following calculation 
on each integer D(x) = c(x - b) mod m, where c is the 
modular multiplicative inverse of a. That is, a x c = 1 
mod m (c is the number such that when you multiply a by 
it, and keep taking away the length of the alphabet, you get 
to 1. Then the original plain text is got from the reverse of 
HDES algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2 Decryption Process of HDES 

Cipher Text 1 

Affine Cipher 

Plain Text 

Cipher Text  

Affine Cipher 

Plain Text 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 02 Issue: 04 | July-2015                     www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2015, IRJET.NET- All Rights Reserved  Page 1026 

 
 

3. HDES ALGORITHM 

Step 1: Get plain text X 

Step 2: While X not equal to null, repeat step 3 to 

step 6 

Step 3: Set A=0 to Z=25 and n=25 

Step 4: Get key1 a and key2 b 

Step 5: Operate C = (ax+b) mod n 

Step 6: Write cipher text C 

Step 7: The cipher text C is given as input text  to 
the Initial Permutation (IP) function of DES.  

Step 8: The Initial permutation is performed on C. 

Step 9: The initial permutation produce two 
halves of permuted block: Left Plain Text (LPT) 
and Right Plain Text (RPT). 

Step 10: Each of LPT and RPT goes through 16 
rounds of encryption process, with its own key:  

10.1:  From the 56-bit key, a different 48-bit Sub-
key is generated using Key        Transformation. 

10.2:  Using the Expansion Permutation, the RPT 
is expanded from 32 bits to 48 bits. 

10.3: The 48-bit key is XORed with 48-bit RPT and 
resulting output is given to the next step. 

10.4: The S-box substitution produces 32-bit 
output from 48-bit. 

10.5: The P-Box Permutes these 32 bits. 

10.6: The P-Box output 32 bits are XORed with the 
LPT 32 bits. 

10.7: The result of the XORed 32 bits are become 
the RPT and old RPT become the LPT. This 
process is called as Swapping. 

10.8: Then LPT and RPT is given to the next round 
and continues to perform the 15 rounds. 

Step 11: After the completion of 16 rounds the 
Final Permutation is performed, which to give the 
64-bit secured cipher text. 

In the above algorithm, the Affine Cipher is added 
to mask the plaintext before given as input to the 
DES algorithm to improve the security of DES. 
Hence the security of the HDES seems to be 
double when compared to existing DES algorithm. 

 

 

4. SIMULATION RESULT 
 

The original Data Encryption Standard algorithm 
and the HDES are implemented using NS2 simulator. The 
experimental results are shown below: 

 
Encryption Time 

Table 4.1 shows the encryption time in 
milliseconds against 20 milliseconds of simulation time for 
DES and HDES. 

 

Algorithm Encryption Time 

DES 214 milliseconds 

HDES 262 milliseconds 

 

Table 4. 1 Encryption Time  

Figure 4.1 shows the graph encryption time 
comparison for the two different algorithms against 10-50 
milliseconds of simulation time where x-axis shows the 
simulation time (sec) and y-axis shows the encryption 
time (ms). 

 

Figure 4.1 Encryption Time  

From the Table 4.1 and Figure 4.1, it is observed 
that the encryption time of HDES is more when compared 
to DES, because Affine Cipher and DES are combined 
together as one algorithm HDES. 

Decryption Time 

Table 4.2 shows the decryption time in milliseconds 
against 20 milliseconds of simulation time for DES and the 
combined algorithm of Affine Cipher and DES. 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 02 Issue: 04 | July-2015                     www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2015, IRJET.NET- All Rights Reserved  Page 1027 

 

Algorithm Decryption Time 

DES 221 milliseconds 

HDES 253 milliseconds 

Table 4.2 Decryption Time 

Fig 4.2 shows the graph for comparison of 
decryption time for the two different algorithms against 
10-50 milliseconds of simulation time where x-axis shows 
the simulation time (sec) and y-axis shows the decryption 
time (ms). 

 

 
 

Figure 4. 2 Decryption Time (MS) 

From the Table 3.2 and Figure 3.2, it is observed 
that the decryption time of HDES is more when compared 
to DES, because Affine Cipher and DES are combined 
together as one algorithm HDES 

Throughput 

Table 4.3 shows the throughput in kbps against 
20 milliseconds of simulation time for DES and the 
combined algorithm of Affine Cipher and DES. 

Algorithm Throughput 

DES 28.13 milliseconds 

HDES 35.20 milliseconds 

 

Table 4.3 Throughput  
 

Fig. 4.3 shows the graph for comparison of 
throughput for the two different algorithms against 10-50 
milliseconds of simulation time for various algorithms 
where x-axis shows the simulation time (sec) and y-axis 
shows the throughput (kbps). 

 

 

 
 

Figure 4.3 Throughput (kbps) 

From the Table 4.3 and Figure 4.3, it is observed 
that the throughput time of HDES is more when compared 
to DES, because Affine Cipher and DES are combined 
together as one algorithm HDES 

Transmission Time 

Table 4.4 shows end to end delay against 20 
milliseconds of simulation time for DES and the combined 
algorithm of Affine Cipher and DES. 

Algorithm Transmission Time 

DES 48.7766 milliseconds 

HDES 48.8349 milliseconds 

Table 4.4 Transmission Time 

 

From the Table 4.4, it is observed that 
transmission time of HDES is more when compared to 
DES, because Affine Cipher and DES are combined 
together as one algorithm HDES. 

 

 

 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 02 Issue: 04 | July-2015                     www.irjet.net                                                                 p-ISSN: 2395-0072 

 

© 2015, IRJET.NET- All Rights Reserved  Page 1028 

Timing complexity of breaking DES and DES with 

AFFINE: 

 
 

Figure 4.4 Time need to break cipher 

              From the graph we can observe that the 
computation time taken by the HDES is more than DES. 
Though the extra computation time is needed by the 
HDES, the security level is higher than the DES algorithm, 
(i.e.) it takes more time to break the cipher text of HDES. 

CONCLUSION  
 

The original DES implementation has some 
weaknesses. To overcome this weakness the Affine Cipher 
is added in DES algorithm. The Designed system improves 
the security of original DES. The only drawback is increase 
in computation time, this can also be avoided by having 
parallel and high speed computation power. By using 
Affine Cipher in DES, the security of DES algorithm is very 
tight and approximately impossible to break the DES 
algorithm. 

In the earlier approaches when Affine Cipher and 
DES algorithm used separately there were chances for the 
cryptanalysis to break the code by the third party. After 
analyzing both of these techniques we came to the 
conclusion that neither of the technique is much secure. 
But a combination of both of these techniques can provide 
much better security.  

The simulation result shows that, it is much 
difficult to break the cipher in Dual Security of DES when 
comparing to simple DES. Because the time taken to break 
the HDES is more complex than simple DES. When both of 
them are used in one approach individually they tend to be 
more powerful and economical.  

 

 

ACKNOWLEDGEMENT 
 

I thank the Almighty God Yehova who showered his 

immense blessings, which helped me to complete this 

dissertation successfully. I am indebted to Ms. Anita 

Madona M., Asst. Prof. Department of Computer Science, 

Auxilium College (Autonomous), Vellore, who guided my 

dissertation with reviews, evaluations, guidance and 

suggestions throughout this dissertation. She offered her 

time to perfect my work. I appreciate her immense 

patience. I express my Whole hearted thanks to my 

Parents and Siblings for their encouragement to bring 

this dissertation to a successful completion. 

 

REFERENCES 

[1]Ruah Praise .Y, Shishir Shukla, “Implementation of Affine 
Substitution Cipher with Keyed Transposition Cipher    for 
Enhancing Data Security”, IEEE, Special issued on the 
protection of data, vol. 4, Jan 2014. 

[2] M.E. Hellman, “DES will be Totally Insecure within Ten 
Years”, lEEE Spectrum, Vo1.16, N0.7, pp32 -39, July 1979. 
 
[3] Alani, M.M., “A DES96 - Improved DES Security”, 7th 
International Multi-Conference on Systems, Signals and 
Devices, Amman, 27-30 June 2010. 
 
[4]Adam. J, “Threats and Countermeasures”, IEEE 
Spectrum, vol. 29, August 1992, 21-28. 
 
[5]De Millo. R, Merritt. M, “Protocols for Data Security”,  
IEEE Computer, vol.16, February 1983, 39 -54. 

 
[6] Evans. A, “Comparing Information without Leaking IT”,  
Common. Of the ACM, Vol.39, May 1996, 77-85. 
 
[7]Hellman. M, “An Overview of Public Key Cryptography”, 
IEEE communication society Magazine, vol. 16, November 
1978, 24-32. 

 


