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Abstract. We consider an efficient trust-region 

framework which employs a new non-monotone  line 

search technique for unconstrained optimization 

problems. Unlike the traditional non-monotonic 

trust-region method, the new point is given by the 

non-monotonic Wolfe line search at each iteration, and 

the trust region radius is updated at a variable rate. 

The new algorithm solves the trust region sub-problem 

only once at each iteration. Under certain conditions, 

the global convergence of the algorithm is proved. 
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1. INTRODUCTION 

 

We consider the following unconstrained optimization 

problem 

min ( ).
nx R

f x
∈

                   (1) 

where ( )f x  is twice continuously differentiable. 

 

Trust region method is a very effective and robust 

technique for solving problem (1) to find the global optimal 

solution. At the k th step, it calculates a trial step 
k

d  by 

solving the following trust region sub-problem 

1
min ( )

2

. .

T T

k k k k

k

d f g d d B d

s t d

φ = + +

≤∆� �

       (2) 

where ( )
k k

f f x=  and ( )
k k

g f x=∇  are the function 

value and the gradient vector at the current approximation 

iterate 
k

x  respectively, 
k

B  is an n n×  symmetric matrix 

which may be the exact Hessian ( )
k

H x  or the 

quasi-Newton approximation and 0
k
∆ >  is the trust 

region radius. In this paper, the notation ⋅� �  denotes the 

Euclidean norm on 
nR . After obtaining 

k
d , the trust 

region method computes the ratio 
k

r  between the actual 

reduction and the predicted reduction of the objective 

function to check if 
k

d  is acceptable. Then the trust region 

radius 
k
∆  is also updated according to the value of 

k
r , 

since 
k

r  reflect the extent to which the quadratic model 

( )
k

dφ  approximates the objective function ( )
k

f x d+ . 

Hei [1] proposed a self-adaptive trust region algorithm, in 

which 
k
∆  is updated by R -function at a variable rate. 

 

Non-monotonic line search technique for unconstrained 

optimization is first proposed by Grippo et al. [2]. Due to its 

high efficiency, many authors generalized the 

non-monotone technique to trust region method and 

proposed non-monotone trust region method, see [3,4]. 

 

Yang and Sun [5] proposed a new region algorithm where 

the trust region radius is updated at a variable rate. 
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Moreover, the new algorithm performed a backtracking 

line search from the failed point instead of resolving the 

trust region sub-problem. 

 

Wang [6] presented a non-monotonic trust region 

algorithm with line search. Unlike traditional 

non-monotonic trust region algorithms, the new point is 

given by the non-monotonic Wolfe line search at each 

iteration, and trust region radius is adjusted by 

sub-problem approximate solution and line search step 

length. 

 

Mosoud Ahookhosh [7] introduced a variant 

non-monotone strategy and incorporate it into trust-region 

framework to construct more reliable approach. The new 

non-monotone strategy is a convex combination of the 

maximum of function value of some prior successful 

iterates and the current function value.  

 

In this paper, we determine the step-length 
k
α  by 

sub-sequent Wolfe line search 

( ) .
T

k k k k k k kf x d R g dα βα+ ≤ +  

( ) .
T T

k k k k k kg x d d g dα γ+ ≥  

where 0 1β γ< < <  and 

( )
(1 )k lk k k kR f fη η+ −=  

where 
min max

[ , ]
k
η η η∈  for 

min
[0,1)η ∈  and 

max min
[ ,1]η η∈ .And we improve the self-adaptive trust 

region algorithm proposed in [1] by adopting the above 

ideas: backtracking line search and non-monotonic 

technique. Now, we can outline our new non-monotone 

self-adaptive trust region algorithm with non-monotonic 

line search.  

 

2. NEW ALGORITHM 

 

Before describing the new algorithm, we need the following 

definition and conclusion ([5]). 

 

Definition 1 Any one-dimensional function ( )R tη defined 

in ( , )R= −∞ +∞  with the parameter (0,1)η ∈  is an 

R -function if and only if it satisfies: 

1) ( )R tη is non-decreasing in ( , )−∞ +∞ ; 

2) 
1

lim ( )
t

R tη β
→−∞

= , where 
1

(0,1)β ∈ is a small constant; 

3) 
1

( ) 1R tη γ≤ − , for all t η< where 
1 1

(0,1 )γ β∈ − is a 

constant; 

4) 
2

( ) 1R tη γ= + , where 
2

(0, )γ ∈ +∞ is a constant; 

5) 
2

lim ( )
t

R tη β
→+∞

= , where 
2 2

(1 , )β γ∈ + +∞ is a 

constant. 

 

Theorem 2 An R -function ( )R tη  (where (0,1)η ∈ ) 

satisfies 

1 1
0 ( ) 1 1, ( , ).R t tηβ γ η< ≤ ≤ − < ∀ ∈ −∞     (3) 

2 2
1 1 ( ) , [ , ).R t tηγ β η< + ≤ ≤ <+∞ ∀ ∈ +∞   (4) 

 

Now, we give a description of our new algorithm. 

Algorithm 1 

Step 1 Given 
0 0 0 1
, , 0, 0,0 1,

n n
x B R ε β×∈ ∆ > ≥ < <  

1 1 2 2 2 1
0 1 , 0, 1 ,0 1, 0,c Nγ β γ β γ< < − > > + < < >
0 1β γ< < < . Set 0, (0) 0.k m= =  

Step 2 Compute ( )
k

g x . If ( )
k

g x ε≤� � , stop. 

Step 3 Solve the sub-problem (2) for 
k

d  satisfying 

min{ , }.
k k k k k

pred g g Bτ≥ ∆� � � � � �   (5) 

min{ , }.
T

k k k k k kg d g g Bτ≤− ∆� � � � � �   (6) 

Step 4 Compute 
( )l kf ,

k
R and ( ( )) /

k k k k
R f x dρ = − +  

k
pred ,find the step-length 

k
α  satisfying in 

( ) .
T

k k k k k k kf x d R g dα βα+ ≤ +        (7) 

( ) .
T T

k k k k k kg x d d g dα γ+ ≥           (8) 

Set 
1k k k k

x x dα+ = + , go to Step 5. 

Step 5 
11
( )k c k kR ρ+∆ = ∆ . Update the matrix 

1k
B +  by a 

quasi-Newton formula, set 

( ) min{ ( 1) 1, }, 1.m k m k N k k= − + = +  
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go to Step 1. 

 

3. CONVERGENCE ANALYSIS 

 

To analyze the new algorithm, we make the following 

assumptions. 

Assumption 

(H1) ( )f x  is continuously differentiable and has a lower 

bound on the level set ( ) { | ( )L x x f x= ≤  
0

( )}f x  is 

compact. 

(H2) The matrix k
B  is an uniformly bounded matrix, i.e. 

there exist 0b>  such that 
k

B b≤� �  for all k N∈ . 

(H3) ( )f x∇  is uniformly continuous, there exist a 

constant 0L>  such that 

( ) ( ) , , .
nf x f y L x y x y R∇ −∇ ≤ − ∀ ∈� � � �   (9) 

(H4) There exists a constant e  such that the trial step k
d  

satisfies 

.
k k

d e g≤� � � �              (10) 

Lemma 3 Suppose that the sequence { }
k

x  be generated 

by Algorithm 1, then the sequence 
( )

{ }
l k

f  is a decreasing 

sequence. 

Proof.  Using definition of k
R  and 

( )l kf , we observe that 

( )

( ) ( )

( )

(1 )

(1 )

k k l k k k

k l k k l k

l k

R f f

f f

f

η η

η η

= + −

≤ + −

=

         (11) 

( )

.

T

k k k k k k k

k

f x d R g d

R

α βα+ ≤ +

≤
       (12) 

These two inequalities show that 

1 ( )
.k k l kf R f+ ≤ ≤              (13) 

We have ( 1) ( ) 1m k m k+ ≤ + , thus from the definition of 

( 1)l kf +  and (13), we can write 

( 1) 1
0 ( 1)

1
0 ( ) 1

( ) 1

( )

max { }

max { }

max{ , }

.

l k k j
j m k

k j
j m k

l k k

l k

f f

f

f f

f

+ − +
≤ ≤ +

− +
≤ ≤ +

+

=

≤

=

≤

            (14) 

This show that the sequence 
( )

{ }
l k

f  is a decreasing 

sequence. 

Lemma 4 Suppose that (H1)-(H4) hold and the sequence 

{ }
k

x  be generate by Algorithm 1, then we have  

( )
lim ( ) lim ( ).

l k k
k k

f x f x
→∞ →∞

=          (15) 

Proof. Using (7) and (11), we obtain 

( ) 1

( ) 1

( ) ( ) 1 ( ) 1 ( ) 1

( ) 1 ( ) 1 ( ) 1

( ( ) 1) ( ) 1 ( ) 1

( ) ( )

.

l k

l k

l k l k l k l k

T

l k l k l k

T

l l k l k l k

f x f x d

R g d

f g d

α

βα

βα

−

−

− − −

− − −

− − −

= +

≤ +

≤ +

 

Preceding inequality, along with 0β>  and Corollary 2.1 

in [8] implies that 

( ) 1( ) 1 ( ) 1
lim 0.

l k

T

l k l k
k

g dα
−− −→∞

=  

Thus using (10), we can conclude that 

( ) 1 ( ) 1
lim 0.

l k l k
k

dα − −→∞
=� �  

The rest of the proof is similar to a theorem in [2]. 

 

Corollary 5 Suppose that the sequence { }
k

x  be generated 

by Algorithm 1, then we have 

lim lim ( ).
k k

k k
R f x

→∞ →∞
=           (16) 

Proof. The proof is similar to that of Corollary 8 in [7]. 

 

Lemma 6 Suppose that (H2) and (H3) hold. Let k
α  be 

sequence generated by Algorithm 1 and { }
k
∆  are 

bounded upper, if ( )g x  is uniformly continuous satisfies 

0 .
k

g kε≥ > ∀� �  

where 0ε> , then there exists a constant � 0α>  such that 

� .
k

kα α≥ ∀                (17) 

Proof. By the same way as in the proof of Lemma 5.1 in [9], 

we have the conclusion. 

 

Lemma 7 If ( )g x  is uniformly continuous and the 

sequence { }
k

x  be generated by Algorithm 1 satisfies 

0.
k

g ε≥ >� �              (18) 
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where 0ε>  is a constant, then there exists a constant 

0c>  such that 

, 0,1,
k

k

c
k

M
∆ ≥ = ⋯           (19) 

where 
k

M  is defined by 
1

1 maxk k
i k

M B
≤ ≤

= + � � . 

Proof. Because ( )f x∇  is uniformly continuous, there 

exist a positive number σ  such that 

1

[ ( ) ( )]

1
(1 ) .

2

T

k

k

d f x d f x

c dτ ε

∇ + −∇

≤ − � �
        (20) 

is satisfied for all 
k

d σ<� � . We show by induction that 

(19) holds with 

0 0 1 0 1 1 1
min{ , , , (1 ) }.c M M cβ σ β ε τ β ε= ∆ −   (21) 

when 0k = , it is obvious that 
0 0

c M∆ ≥ , so (19) holds 

for 0k = . Assume that (19) is true for k , we will prove 

that (19) holds for 1k+ . 

Since 
k

M  is non-decreasing, to prove (19) for 1k+ , it 

suffices to establish the relation 

1
.

k

k

c

M
+∆ ≥                (22) 

Since 
11
( )k c k kR ρ+∆ = ∆ , it follow form Theorem 2 that 

when 
1 1
,

k k k k
c c Mρ +≥ ∆ ≥∆ ≥ . In this case, relation 

(22) is trivial. Therefore, in the remainder of proof, 

1k
cρ < , thus 

1k+∆  is in the range
1 1k k
β +∆ ≤∆ ≤  

1
(1 )

k
γ− ∆ . 

If 
k

d σ≥� � , then 

1 1

1

1

1 0

.

k k

k

k

k

d

M M

c M

β

β

β σ

β σ

+∆ ≥ ∆

≥

≥

≥

≥

� �

 

If 
k

d σ<� � , it follows from Algorithm 1 that 

1

1

( ) ( (0) ( ))

( 2).

k k k k k k

T T

k k k k k

f x d R c d

c g d d B d

φ φ+ − >− −

= +
    (23) 

From (20) and Lemma 2.2. in [8], we know that 

1

0

1

( )

( ) ( )

[ ( ) ( )] ( )

(1 )
.

2

k k k

k k k

T T

k k k k k k

T

k k k

f x d R

f x d f x

d f x d f x d f x d

c
g d d

θ θ

τε

+ −

≤ + −

= ∇ + −∇ +∇

−
< +

∫

� �

 

(24) 

From (23) and (24), we have 

1 1
(1 )( 2) 2.

T T

k k k k k kc g d d c d B dτε− + >� �   (25) 

Moreover, we have by (5) and (18) that 

2 min{ , }.
T T

k k k k k k kg d d B d Bτε ε− − ≥ ∆ � �   (26) 

Multiplying (26) by 
1

(1 )c−  and combining it with (25), 

we get 

2

1 1

1

1

2(1 ) min{ , } (1 )

(1 ) {2min{ , } }

(1 ) min{ , 2 }.

k k

T

k k k

k k k

k k k

k k k

B

d B d

c B c d

c B

c B

τε ε τε

τε ε

τε ε

∆

≥−

> − ∆ − −

≥ − ∆ −∆

= − ∆ −∆

� �

� � � �

� �

� �

 

Using the above condition, we can give a constant lower 

bound on the product  

1 1
min{(1 ) , } .

k k
B c cτε ε β∆ > − ≥� �  

always holds. So 

1 1
.

k k k k
c B c Mβ+∆ ≥ ∆ > >� �  

Thus, (19) holds for 1k+ . Therefore, by induction, (19) 

holds for all k . 

 

Theorem 8 Assume that Assumption holds. Let { }
k

x  be 

the sequence generated by Algorithm 1, then 

lim inf 0.
k

k
g

→∞
=� �              (27) 

Proof. We prove it by contradiction. Assume that (27) is 

not true, that is, there exists a constant 0ε>  such that 

,
k

g kε≥ ∀� � . 

It follows from (6), (7), (11) and Lemma 6 that 
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�

�

( ) ( ) 1 ( ) 1 ( ) 1

( ) 1 ( ) 1 ( ) 1 ( ) 1

( ) 1 ( ) 1

( ( ) 1) ( ) 1

( )

min{ , }

min{ , }.

l k l k l k l k

T

l k l k l k l k

l k l k

l l k l k

f f x d

R g d

R b

f b

α

βα

τβαε ε

τβαε ε

− − −

− − − −

− −

− −

= +

≤ +

≤ − ∆

≤ − ∆

  (28) 

Using Corollary 2.1 in [8] , from (28), we have 

( ) 1
lim 0.

l k
k

−→∞
∆ =                 (29) 

For k M> , we have ( ) ( )k N k m k l k k− ≤ − ≤ ≤   and 

hence 

0 ( ) .k l k N≤ − ≤           (30) 

By the updating formula of 
k
∆  and Theorem 2, 

1 2

j j

k k j k
β β+∆ ≤∆ ≤ ∆  holds for all j . Thus, it follows 

from (30) that 

1 1

1 ( ) 1 2 ( ) 1
.

M M

l k k l k
β β+ +

− −∆ ≤∆ ≤ ∆  

Then, from (29), we have lim 0
k

k→∞
∆ = . It contradicts (19) 

in Lemma 7. 

 

4. CONCLUSIONS 

 

In this paper, we proposed a new non-monotone 

self-adaptive trust region algorithm with non-monotone 

line search. After we analyzed the properties of the new 

algorithm, the global convergence theory is proved. In the 

near future, we would like to investigate some new type of 

combinations composed of different functions values in 

order to sufficiently use the information which the 

algorithm has already derived. 
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