
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET-All Rights Reserved Page 572

An Optimum Algorithm for Data Compression using VHDL

Mr. Pralhad Sarkar1, Prof. Prashant Indurkar2, Prof. Ravindra Kadam3

1M.TechStudent, BDCE, Sewagram, India
2Associate professor,BDCE, Sewagram, India.
3Assistant professor,BDCE, Sewagram, India.

Abstract: -This paper describes a method of data
compression for FPGA systems called by us GCC (Golomb
Compressed Code algorithm). This method is widely used
for lossless Data compression due to its lower complexity
in encoding & decoding methods. The main objective of
data compression is to find out the redundancy and
eliminate them through Golomb algorithm, so that the
data which is reduced require less memory as well as the
size of the data decreases hence the cost of transmission
is also reduce. This method gives Lossless data
compression recreates the exact original data from the
compressed data while lossy data compression cannot
regenerate the perfect original data from the compressed
data. Our method reduces code size up to 38.63%
(including different code word size).In order to prove its
validity, the developed algorithm is simulated using the
Modelsim Altera Starter Edition 6.4a.

Keywords – GCC; CC-MLD; pattern blocks; encrypt;
decrypt

INTRODUCTION

With the increase in the requirement of online real time data,
data compression algorithms are to be implemented for
increasing throughput. Compression is the art of representing
information in a compact form rather than its original or
uncompressed form. The compression code is place in main
memory and/or instruction cache memory, thereby
increasing the number of stored instruction, then increasing
the cache hit rate and decreasing the search into the main
memory, thus increasing the system performance and
reducing power consumption. [4] The original file which is to
be compressed is first coded which is then known as
encrypted file. For any efficient compression algorithm file
size must be less than the original file. To get back the
original file we need to ‘decrypt’ the encoded file. Data
compression methods are sometime very difficult as it
require hardware for its implementation ants of maintains.

The compressed code is placed in main memory and/or
instruction cache memory, thereby increasing the number of
stored instructions, then increasing the cache hit rate and

decreasing the search into the main memory, thus increasing
system performance and reducing energy consumption [6].
Thus, during the program execution, the compressed code is
taken to decompression and sent to the next level of memory
or directly to processor.[1] The compression rate (CR) is
widely accepted to measure efficiency of a compression
method and it is defined according to(1) .

 (1)

Fig. 1 shows an overview of code compression method using
GCC algorithm. These algorithms used to encrypt works
properly; there should be a significant difference between the
original file and the compressed file. When data compression
is used in a data transmission application, speed is the
primary goal.[5] Speed of transmission depends upon the
number of bits sent, the time required for the encoder to
generate the coded message and the time required for the
decoder to recover the original ensemble.

Fig.1 Overview of Golomb CC algorithm
In this paper, a detail study of Golomb coding algorithms for
test vector compression and decompression is presented. In
order to have simplicity in development and testing, the
Golomb coding parameter m is set to 2 [7].The goal of this
work was to increase the compression ratio as high as
possible without any loss in the original data.

RELATED WORK

Author Wander Roger Azervedo Dias, Edward David Moreno

and Issanc Palmeria give a new method of code compression

Input

stream

Golomb

CC

Memory Output

stream

Decoder

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET-All Rights Reserved Page 573

for embedded systems by them as CC-MLD (Compressed

Code using Huffman-Based Multi-Level Dictionary). It applies

two compression techniques and it uses the Huffman code

compression algorithms. A single dictionary is divided into

two levels and it is shared by both techniques. They

performed simulations using application from MiBench and

they had used four embedded processor (ARM, MIPS,

PowerPC and SPARC). Their method reduces code size up to

30.6% (including all extra costs for these four platforms).[1]

They had implemented the decompressor using VHDL and

FPGA and they had obtained one clock from decompression

process.

Author Ivan Scherbakov, Christian Weis and Norbert When

had describe a design and develop a data compression engine

on a single FPGA chip that is used as part as part of text-

classification application. The implementation of the

prediction by partial matching algorithm and arithmetic

coding data compression is totally in hardware as well as in

software code. Their design implements a dynamic data

structure to store the symbol frequency counts up to maximal

order of 2. The computation of the tag-interval that encodes

the data sequence in arithmetic coding is done in parallel

architecture that achieves a high speed up factor. Even with a

relatively slow 50MHz clock their hardware engine performs

more than 70 times faster than a software based

implementation in C on a CPU running on a 3 Ghz clock. [3]

Author Joel Ratsaby and Vadim Sirota had presented a

flexible high-performance implementation of the LZSS

compression algorithm capable of processing up to 50 MB/s

on a Virtex-5 FPGA chip. They exploit the independently

addressable dual-port block RAMs inside the FPGA chip to

achieve an average performance of 2 clock cycles per byte. To

make the compressed stream compatible with the ZLib

library they encode the LZSS algorithm output using a fixed

Huffman table defined by the Deflate specification. They also

demonstrate how changing the amount of memory allocated

to various internal tables impacts the performance and

compression ratio. [2] They provide a cycle-accurate

estimation tool that allows finding a trade-off between FPGA

resource utilization, compression ratio and performance for a

specific data sample.

Author Vijay G. Savani, Piyush M. Bhatasana describes the

methods of creating dedicated hardware which can receive

uncompressed data as input and transmit compressed data at

the output terminal. This method uses FPGA for the same,

wherein the hardware part has been created using Xilinx

Embedded Development Kit (EDK) and data compression

algorithms have then been implemented on the same

hardware. The EDK helps creating a Soft Core Processor on

the FPGA with desired specifications. The data compression

algorithm can be implemented on this processor. The

advantage of this kind of a system is that, without changing

the hardware, the FPGA can be reprogrammed with a new

algorithm whenever a better technique is discovered. For the

proof of concept the Huffman coding technique has been

implemented. The Soft Core Processor uses serial port and for

direct input the GPIO of the processor were used. The user

enters text data through this port, and the soft core processor

using Huffman’s data compression algorithm gives

compressed data as the output [4].

Author Arohi Agarwal and V.S.Kulkarni had discussed about

Data transmission, storage and processing are very necessary

nowadays. Data can be represented in compact form using

data compression for transmitting and storing a huge volume

of data required large space which is an issue. In order to

transmit and store such a large volume of data it requires

large memory space and large bandwidth avability. Because

of which the hardware increases as well as cost increases.

Hence to solve this it is necessary to reduce the size of the

data which is to be transmitted without any information loss

.For this purpose they have taken the following algorithm.

LZMA is a lossless dictionary based algorithm which is used

in 7zip was proving to be effective in unknown byte stream

compression for reliable lossless data compression. Here the

algorithm LZMA is implemented on SPARTAN 3E FPGA to

design both the encoder and the decoder which reduces the

circuit size and its cost [8].

METHODOLOGY – GOLOMB CC

The details regarding Golomb Coding basic background

information is described. Golomb coding uses a tunable

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET-All Rights Reserved Page 574

parameter m to divide an input value into two parts: q, the

result of a division by m, and r, the remainder. The quotient in

unary code followed by the remainder in truncated binary

encoding. W Golomb coding is equivalent to unary coding. In

Golomb Coding, the group size, m, defines the code structure.

Thus, choosing the m parameter decides variable length code

structure which will have direct impact on the compression

efficiency [9].

After finalization of parameter m, a table which maps the

runs of zeros or ones is created [7]. A Run length of multiples

of m are grouped into Ak and given the same prefix, which is

(k – 1) number of one’s followed by a zero, which can also

termed as quotient and can be represented in the form of

unary codes. A tail is given for each member of the group,

which is the binary representation of log2m bits.[5] The other

term for tail is Remainder of the division of run length by m.

The codeword is then produced by combining the prefix and

the tail.

In order to avoid this problem, the algorithm must be capable

of detecting the end of data and if the last bit is a ‘0’ then

additional ‘1’ must be added during the encoding process and

at the time of decompressing the encoded data, this extra

appended 1 should be removed by the decoder.

I. ALGORITHM

1. Fix the parameter M to an integer value.

2. For N, the number to be encoded, find

a. quotient = q = int[N/m]

b. Remainder = r = N modulo m.

3. Generate Codeword

The Code format: <Quotient Code><Remainder Code>,
A. WhereQuotient Code (in unary coding)

i. Write a q-length string of 1 bits
ii. Write a 0 bit.

B. Remainder Code (in truncated binary encoding)

I. If M is power of 2, code remainder as binary
format. So log2(m) bits are needed.

II. If M is not a power of 2, set b= log2(m).

a. If r < 2b - m code r as plain binary using b-1

bits.

b. If r>= 2b - m code the number r + 2b–m in

plain binary representation using b bits.

 TABLE I. EXAMPLE OF GOLOMB CODING

Number
s

Diviso
r

Quotien
t

Remainde
r

Code

5 4 1 1 0101
10 4 2 2 00110
15 4 3 3 000111
61 8 7 5 00000001101

64 8 8 0
00000000100

0

In Golomb coding, we code an integer (m), by the quotient (q)

and remainder (r) of division by the divisor (d). We write the

quotient bi=dc in unary notation and the reminder i mod d in

binary notation [10]. We need a stop bit after the quotient.

We can use 1 as stop bit if the quotient is written as 0 to

represent the unary form. In case of Rice coding, we use the

divisor as a power of 2. For example if we are coding a

number 15 with divisor 4, the code will be 000111 (See

TABLE I). Golomb-Rice coding will achieve good compression

ratio. This algorithm is applied though VHDL to achieve the

GCC.

II. SIMULATION

Fig. 2 shows the simulation of Golomb code where input

stream is applied to GCC with the clock having 50 duty cycles,

it gives the compress data as shown in Table II.

Fig. 2 Simulation wave form

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET-All Rights Reserved Page 575

III. RESULT and COMPRESSION TABLE

Table II gives the compression between the CC-MLD[1] and
GCC method. The golomb code is synthesis on Modelsim
Altera Starter Edition 6.4a.The simulation were performed
with unitary code and patterns block (since PB- is “pattern
blocks” with different pattern)

TABLE II. COMPRESSION TABLE

Table III. shows the overall comparison of 512 and 1024 bits
word size level. In which the compression of GCC is more
continent and the compression rate is better.

TABLE III. OVERALL AVERAGE COMPRESSION RATE

Algorithm
Level
512 1024

CC-MLD 28.3% 30.6%
GCC 32.5% 38.63%

Golomb compress code algorithm can perform ‘n’ bit

compression depending upon the size of m (length of input

stream). Fig. 3 shows the compression graph with various PB.

Since the length of the sample to be read is not known when

the decoder loads data to its registers, it need to load

packages of data of a fixed size. The package size must be

equal or greater than the maximum bit length of the encoded

data. As mentioned, we assume that the maximum length is

16 bits, and that the decoder receives packages of this size.

Further, the register size in the decoder must be 3 times

larger than this, resulting in 48 bits, in order to avoid buffer

under run.

FIG. .3 INPUT BIT STREAM COMPARISON.

V. CONCULSION

In this paper we present an optimum code compression
amethod (GCC – Golomb Compress Code) that uses a
technique which is based on Golomb Algorithm. The
compression method is implemented in VHDL. Through the
simulation we can see that the method GCC reached, on
average compression rate up to 38.6%. Also this VHDL based
method is 70% faster than C based compression. Thus we
conclude that our method present in this paper, is an efficient
and can be used in FPGA based system which is give a well
compression ratio. As a future work different compression
code algorithm can be simulate using VHDL.

REFERENCES

[1] Wander Roger Azevedo Dias, Edward David Moreno,

Issanc Palmeria, “ A New code compression Algorithm

and its Decompressor in FPGA – Based Hardware” IEEE,

2013.

[2] Joel Ratsaby, vadim Sirota, “ FPGA – based data
compression based on Prediction by Partial Matching,
IEEE, 2012.

[3] A High-Performance FPGA-Based Implementation of the

LZSS Compression Algorithm by Ivan Shcherbakov,

Christian Weis, and Norbert Wehn, 2012 IEEE.

 Word size

128 256 512 1024
Unitary
CCMLD

15.7% 20.5% 20.5% 27.2%

Unitary GCC 25% 27.77% 32.5% 38.63%

PB-2 CCMLD 8.3% 10.8% 12.5% 7.9%

PB-2 GCC 25% 22.22% 30% 18.18%

PB-3 CCMLD 4.6% 5.8% 3.4% -8.1%

PB-3 GCC 12.5% 44.44% 40% 9.09%

PB-4 CCMLD 3.1% 3.3% -3.8% -19.3%

PB-4 GCC 25% 33.33% 18.18% 9.09%

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 04 | July-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET-All Rights Reserved Page 576

[4] Implementation of Data compression Algorithm on

FPGA using soft core processor by Vijay G. Savani ,

Piyush M. Bhatasana and Akash Mecwan, 2012 IJICT.

[5] Data compression Methodologies for Lossless Data and

Compression between Algorithms, 2013 IJESIT.

[6] W. R. A. Dias, and E. D. Moreno, "Code Compression in

ARM Embedded Systems using Multiple Dictionaries". In

Proc. of 15th IEEE CSE 2012, Paphos, Cyprus, pages 209-

214, December 2012.

[7] G. H. H’ng, M. F. M. Salleh and Z. A. Halim,” Golomb

Coding Implementation in FPGA”, School of Electrical

and Electronics Engineering, Universiti Sains

Malaysia,Seri Ampangan,14300 Nibon Tebal, Pulau

Pinag, Malaysia. VOL. 10, NO. 2, 2008, 36-40.

[8] “FPGA based implementation of Data compression using

Dicitionary based ‘LZMA’ Algorithm” by Arohi Agrawal,

V.S.Kulkarni, IRF international Conference.

[9] Hong-Sik Kim, Joohong Lee, Hyunjin Kim, Sungh Kang,

and Woo Chan Park, A Lossless Color Image

Compression Architecture using a Parallel Golomb- Rice

Hardware CODEC, IEEE transactions on circuits and

systems for video Technology, vol. 21, no. 11, November

2011.

[10] J. Zhang, X. Long, and T. Suel. Performance of

compressed inverted list caching in search engines.

pages 387–396, 2008

