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Abstract- This paper represents the optimal criteria 
method for topological optimization of isotropic 
material under different loads and boundary conditions 
with the objective to reduce mass of an existing 
material and study the different shape obtained. 
Topological optimization mainly comprises of a 
mathematical approach that optimizes the layout 
within a given design constraints, for a given set of 
loads and boundary condition such that the 
performance matches with the prescribed set of 
performance targets. Topological optimization solve the 
problem of distributing a given amount of material in a 
design domain subjected to load and supports 
conditions, such that the compliance of the structure is 
minimized while the stiffness of structure is maximized. 
For material distribution system solid isotropic with 
penalization approach is used. In all the structures 
objective function is compliance, design variable is 
pseudo density and state variables are the response of 
structures that is deflection. Objected function is 
subjected to volume constraint and by minimize the 
compliance stiffness of structures are maximize. 
Different numerical examples are taken to study the 
optimal criteria approach and validate the results 
obtained with SA-SIMP and BESO method. This paper 
work represents topological optimization for static and 
self-weight loading using finite element solver ANSYS. 
APDL (ANSYS Parametric Design Language) has been 
employed for utilizing the topological optimization 
capabilities of commonly used finite element solver 
ANSYS. 8 node 82 elements are used to model and mesh 
the isotropic structures in ANSYS.  

Keywords- Optimality Criterion, SIMP, Topology 
Optimization, Pseudo-densities and Compliance 
minimization 

1 INTRODUCTION 

Topology optimization is a useful tool for a designer which 
generates the optimal conceptual shape of a mechanical 
structure. The structural shape is generated within a 
predefined design space. In addition, the user defines 
structural supports and loads. Without any further 
decision and guidance of the user, the method will give the 
structural shape thus provides a first idea of an optimum 
geometry. A desired property of the structure is 
maximized by changing the shape of the given material. 
Usually this maximized property is stiffness. Another 
usage of topology optimization is minimizing the weight, 
subjected to a given constraint (such as stress). Topology 
optimization method is a technique to find out optimal 
material distribution within predefined design domain. It 
can give the best conceptual design that can satisfy all 
design requirements. Topology optimization problem 
includes objective function, design domain and design 
constraints. Objective function represents the goal of the 
optimization method which is to be minimized or 
maximized. 

 With the exception of a few early landmark results [3 12], 
the historical development of the field of structural 
optimization seems to have followed an opposite route to 
the actual structural design process [2 20]. Since its 
inception, research in numerical optimal structural design 
went from element stiffness design, through geometric and 
shape optimization to topology optimization design. It is 
also clear that the major impact on the structural 
efficiency, in the sense of stiffness/volume or 
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stress/volume ratio, is determined at the conceptual stage 
by the topology and shape of the structure. No amount of 
fine-tuning of the cross-sections and thicknesses of the 
elements will compensate for a conceptual error in the 
topology or the structural shape [13]. With the 
development of high-speed computer, the topology 
optimization method using numerical approach has been 
growing quickly [1 5 16]. In the present work we will be 
studying the topology optimization of continuum 
structures with the help of Optimality criteria method 
using ANSYS, also ANSYS use SIMP method for 
penalization of intermediate densities. The finite element 
based continuum topology optimization as a generalized 
shape optimization problem has experienced tremendous 
progress since the influential work of Bendsoe and Kikuchi 
[2]. They presented a homogenization based optimization 
approach of topological optimization. They assumed that 
the structure is formed by a set of non-homogenous 
elements which are composed of solid and void regions. 
They obtained optimal design under volume constraint 
through optimization process. In their method, the regions 
with dense cells are defined as structural shape, and those 
with void cells are areas of unnecessary material. It has 
also been demonstrated that the optimal material 
distribution can be considerably simplified by employing a 
density dependent isotropic material. In both the 
approaches, remeshing of the structural domain and the 
evaluation of shape density are avoided. This problem had 
a discrete nature, since the material distribution consisted 
of solid or void regions. 

 
Fig. 1: Design domain of typical topology optimization 

problem [10] 

 A scheme of design domain is shown in  Figure 3.1, where  
Ft is the external force,  Ω  is  the  design domain,  Ωs 
denotes  a solid domain and  Ωv  represents a sub-domain 
without material.  Topology optimization methods are 
based on FEM and sensitivity analysis. In FEM each finite 
element is assigned a design variable which is the material 
density of the element. By updating material density of 

each element, structure design can be improved to optimal 
design.  

2 SIMP METHOD 

The SIMP stands for Solid Isotropic Material with 
Penalization method. It is also known as the power-law 
approach, in which the material properties can be 
expressed in terms of the design variable material density 
using a simple “power-law” interpolation as an explicit 
means to suppress intermediate values of the bulk density. 
This method has been presented by Bendsoe [3]. The 
SIMP, material model where material properties are 
assumed constant within each finite element, discretizes 
the design domain with the design variables being the 
element densities. At each point of the design domain, the 
material properties are modeled as the relative material 
density raised to some power times the material 
properties of solid material. The common choice of design 
parameterization is to take xi as the design variable by 
convention, xi = 1 at a point signifies a material region 
while xi = 0 represents void. Each finite element (formed 
due to meshing in ANSYS) is given an additional property 
of pseudo-density, xi where 0≤xi≥1, which alters the 
stiffness properties of the material. 

                                                                 (1) 

ρi= Density of the ith element 
ρ0= Density of the base material 
xi= Pseudo-density of the ith element 

This Pseudo-density of each finite element serves as the 
design variables for the topology optimization problem 
and the intermediate values are penalized according to the 
following scheme: 

                                         (2) 

Here Ei is the material young modulus of the ith element 
while E0 denotes the young modulus of the solid phase 
material. The stiffness of intermediate densities is 
penalized through the power law relation, so they are not 
favoured. As a result, the final design consists primarily of 
solid and void regions. 

3 MATERIAL AND METHOD 

3.1 Optimal Criteria Approach 

Optimality criteria are necessary conditions for minimality 
of the objective function and these can be derived by using 
either variational methods or extremum principles of 
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mechanics. Optimality criteria (OC) method was 
analytically formulated by Prager and co-workers in 1960. 
It was later developed numerically and become a widely 
accepted structural optimization method.OC methods can 
be divided into two types. One type is rigorous 
mathematical statements such as the Kuhn-Tucker 
conditions. The other is algorithms used to resize the 
structure for satisfying the optimality criterion. Different 
optimization problems require different forms of 
optimality criterion. In Kuhn-Tucker conditions, the 
inequality constraints can be transformed into equality 
constraints by adding slack variables. Here the 
optimization in its most general form may be expressed as 
follows 

Minimize f(x) 
  Such that hj(x) = 0   j=1,2, ….nj                 (3) 

gk(x) ≤ 0   k=1,2,…nk 

Where hj and gk are constraints, j and k are the number of 
equality of constraints and inequality constraints, 
respectively 

The Lagrangian function of the optimization can be defined 
as 

L(x,t, ) = f(x) +                                                                                     

(5) 

Where  are Lagrangian multipliers 

Differentiating the Lagrangian function (5) with respect to 
x, t, λ, ζ we obtain 

 

 

 

 

From equation 7 & 8 

                                                       (10) 

                                          (11) 

This implies that when an inequality constraint is not 
active, the Lagrangian multiplier associated with the 

constraint is zero. By using Kuhn-Tucker conditions, the 
optimality conditions for the optimization problem can be 
stated as 

 

 

 

 

 

The optimal criteria method is one of the best-established 
and widely accepted optimization techniques. 

3.2 Numerical Examples 

Three numerical examples are taken to demonstrate the 
validity and efficiency of the proposed approach. The 
specimens are taken from the work of Garicia-Lopez et al. 
[8] and Huang and Xie [9]. All the models are under plane 
state of stress.  

Model 1: Cantilevered beam under static loading 

A cantilever beam of thickness 1mm is considered in this 
case. The cantilever is under the state of plane stress and 
supports a concentrated load of magnitude 1N at the 
bottom right corner. The left edge is fixed as shown in 
Figure 2. The meshing is done with 8-node quadrilateral 
elements by giving element edge length one for each line. 
The results were compared with combining simulated 
annealing and SIMP approach [8]. Table 4 shows the final 
compliance obtained with ANSYS (OC) and combining 
simulated annealing and SIMP approach. Material 
properties for Model 1 are shown in Table 1. 

 

 

F 

20 mm 

32 mm 
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Fig. 2: Geometry and boundary conditions for Model 1 

 

 

 

 
Table 1: Material properties, Load, Elements and Volume 

usage fraction for Model 1 
Young’s 
modulus 

Poisson’s 
ratio  

Load  Elements Volume  
Fraction 

1 N/m² 0.3 1N 640(32*20) 0.4 

Model 2: Messerschmitt Bolkow Bolhm beam under 
static loading 

The beam is in the state of plane stress with a thickness of 
1 mm. The beam is optimized for minimum compliance. 
Due to symmetry of the model, only half of the model is 
considered with symmetry boundary conditions as it is 
symmetric about the vertical axis. The beam is supported 
by a roller support at the bottom right corner and 
symmetric boundary conditions are applied on the left 
edge as shown in Figure 3. The meshing is done with 8 
nodes quadrilateral elements by giving element edge 
length one for each line. The results are compared with 
combining simulated annealing and SIMP approach [8]. 
Table 5 shows the final compliance obtained with ANSYS 
(OC) and combining simulated annealing and SIMP 
approach. Material properties for model 2 are shown in 
Table 2. 

Table 2: Material properties, Load, Elements and Volume usage 

fraction for Model 2 

Young’s 

Modulus 

(E) 

Poisson’s 

ratio (ν) 

Load 

(N) 

Elements Volume 

Usage 

Fraction 

1 N/m² 0.3 1 1200(60*20) 0.5 

 
Fig. 3: Geometry and boundary conditions for Model 2 

Model 3: Messerschmitt Bolkow Bolhm beam under 
self-weight 

The beam is in the state of plane stress with a thickness of 
1 mm. Here the classic MBB beam subjected to a 
concentrated load and its self-weight is to be optimized. 
The dimensions and support conditions of the design 
domain are shown in Figure 4. Due to the symmetry, only 
half of the design domain is discretized with 100x50 8-
node plane stress elements. The results are compared with 
the results of X.Huang et al. [9] who utilized BESO method 
for topological optimization. The material volume 
constraint is set to be 40% of the whole design domain. 
Material properties for model 2 are shown in Table 3. 

Table 3: Material Properties and Density Used for MBB 

Beam (Model 4) 

Young’s modulus Poisson’s ratio  Density  Volume  

fraction 

200  N/ mm
2
 0.3 78 kg/m

3
 0.4 

 

      

Fig. 4: Geometry and boundary conditions for Model 3 

4 RESULT AND DISCUSSIONS 

This section presents the detailed results of FE analysis 
and optimization of the above structures. Final compliance 
and optimal shape of the models obtained with the help of 
gradient based ANSYS based Optimality Criterion have 
been compared with SA-SIMP and BESO method [8 9]. 
 

Model 1: Cantilevered beam under static loading 

The optimal shape of the cantilever beam has been 
obtained through ANSYS (OC) as shown in Figure 5 (a). 
The shapes obtained through different methods are almost 
same. The final value of compliance after topological 
optimization is presented in Table 4 comprising of the 
optimal compliance values ANSYS (OC) method give lowest 
value. As it has been observed that, final compliance value 
obtained through ANSYS is 2.084% lower than PS-RoA 
method, 1.814% lower than RS-RoA method. From the 
table it has been observed that number of iterations 

60 mm 

20 mm 

F 

20 mm 

5 mm 
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required by ANSYS based OC is 39. In ANSYS (OC) method 
convergence criteria is 0.0001 given Mesh density is same 
in all the method.  Above result show that ANSYS (OC) can 
use for topological optimization and on comparison ANSYS 
(OC) is more effective. 

 
 
Table 4: Comparison between ANSYS OC, PS-RoA and RS-

RoA for Model 1 
Method ANSYS OC PS–RoA RS–RoA 

Compliance (Nmm) 52.224 53.3123 53.1714 

Iterations 39 * * 
*Not available 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 5: Optimal shapes obtained using (a) ANSYS OC (b) PS-
RoA (c) RS-RoA 

 

 
Fig. 6: Convergence of compliance values for cantilever 

beam 

Model 2: Messerschmitt Bolkow Bolhm beam under 
static loading 

The optimal shape of the MBB beam has been obtained 
through ANSYS b(OC) as shown in Figure 7 (a). The shapes 
obtained through different methods are almost same. The 
final value of compliance after topological optimization is 
presented in Table 5. On comparison of optimal 
compliance value ANSYS (OC) method give lowest value. 
As it has been observed that, final compliance values 
obtained through ANSYS is 3.499% lower than PS-RoA 
method, 3.44% lower than RS-RoA method. From the 
Table 5 it has been observed that number of iterations 
required by ANSYS (OC) is 32. In ANSYS (OC) method 
convergence criteria is 0.0001 given. Mesh density is same 
in all the method. From above result we conclude that 
ANSYS can used for topological optimization and on 
comparison ANSYS based OC method is more effective. 

 
(a) 
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(b) 

 
(c) 

Fig. 7: Optimal shapes obtained using (a) ANSYS OC (b) PS-
RoA (c) RS-RoA 

Table 4: Comparison between ANSYS OC, PS-RoA and RS-
RoA for Model 2 

Method ANSYS OC PS–RoA RS–RoA 

Compliance (Nmm) 183.345 189.7603 189.6530 

Iterations 32 * * 

*Not available 
 

 
Fig. 8: Convergence of compliance values by ANSYS for 

MBB beam under static loading 

Model 3: Messerschmitt Bolkow Bolhm beam under 
self-weight loading 

The optimal shape of the cantilever beam has been 
obtained through ANSYS (OC) as shown in figure 9 (a). The 
shapes obtained through both methods are almost same. 
The final value of compliance after topological 
optimization is presented in Table 6 comprising of the 
optimal compliance value ANSYS (OC) method give higher 
value. As it has been observed that, final compliance value 
obtained through ANSYS is 5.88% higher than BESO 
method. From the Table 6 it has been observed that 
number of iterations required by ANSYS (OC) is 17 while 
for BESO method is 76. Figure 10 show the convergence of 
compliance values (OC). In ANSYS (OC) convergence 
criteria is 0.0001 given. Mesh density is same in both the 
method. From above result we conclude that ANSYS can 
use for topological optimization and on comparison ANSYS 
(OC) is more effective on the basis of number of iterations. 

 

(a) 

 

(b) 

Fig. 9: Optimal Shapes Obtained by (a) ANSYS (OC) and (b) 
BESO Method  

Table 6: Final compliance value for self weight for MMB 
beam Model 3 

Method Compliance Iterations 

BESO 0.034 76 

ANSYS based OC 0.036 17 
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Fig. 10: Convergence of compliance values by ANSYS for 

MBB beam under static loading 

5 CONLUSIONS 

The results of Optimality Criteria method using ANSYS 
when compared with results obtained by SA-SIMP and 
BESO method for the linear elastic isotropic structures 
taken for study are better. Compliance value obtained 
through ANSYS for cantilever beam under static loading is 
2.084% lower than PS-RoA method and 1.814% lower 
than RS-RoA method and for MBB beam under static 
loading is 3.499% lower than PS-RoA method and 3.44% 
lower than RS-RoA method also it takes lesser number of 
iterations to reach the optimal solution it is found that the 
Optimality Criteria using ANSYS converges very fast in 
comparison to SA-SIMP method. The optimal topologies 
obtained by both the methods are almost same. 
Compliance value obtained by ANSYS for MBB beam under 
self-weight is 5.88% higher than BESO method where as 
number of iterations required by ANSYS is 17 while for 
BESO method is 76. It is found that the Optimality Criteria 
approach using ANSYS converges very fast in comparison 
to BESO method. The optimal topologies obtained by both 
the methods are almost same. 
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