
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 03 | June-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 253

Aggregating Static and Dynamic Methodologies For PHP Application

Security Assessment

Mr. Vishal Vijaykumar Parkar1, Mr. H. A. Tirmare2

1 Student, Computer Science & Technology, IDepartment of Technology
Shivaji University, Kolhapur, Maharashtra, India

2 Assistant Professor, Computer Science & Technology, IDepartment of Technology
Shivaji University, Kolhapur, Maharashtra, India

---***---
Abstract - In recent years, focus of business world

has been moved towards the Internet. Web

applications provide a generous interface non-stop

thus offering to malicious users a wide spectrum of

possible attacks. Consequently, the security of web

applications has become a crucial issue.

The state-of-the-art tools for bug discovery in

languages used for web-application development,

such as PHP, suffer from a relatively high false-

positive rate and low coverage of real errors; this is

caused mainly by non-precise modeling of dynamic

features of such languages and path-insensitivity of

the tools. In this project, we will demonstrate Lacunae

of the current tools and implement a novel approach

to address these issues. We will show how our

technique handles some of the situations where other

tools fail and illustrate it on examples.

Key Words: web application security; static security

assessment; static security assessment, etc…

1. INTRODUCTION

Recently, as business world has moved its focus towards
the Internet, a number of applications have been moved
on-line, and this trend is still continuing. Safety and
security of the web applications involved in such
transactions is therefore of the top priority.

A typical web application is available and operational
24/7, thus not putting any time pressure on malicious
users; a generous interface these applications provide
further widens the hacker’s field. Amongst the 25 most
common programming errors, those specific to web
applications form a significant part of this group; the
examples include improper neutralization of SQL
commands, cross-site request forgery, and missing
authorization.

The most common programming language used at the
server side is PHP. PHP features many special attributes
that make it different from common programming
languages, especially as far as dynamism is concerned.
The examples are inclusion of a file specified by a
runtime-computed filename and the eval construct
allowing runtime construction of code that is executed
afterwards. This makes it hard or sometimes even
impossible to apply the same techniques and tools for
finding bugs or for correctness verification as in the case
of “non-web” programming languages.

2. RELEVANCE / MOTIVATION

Due to increased use of Web applications, their security
has become an important issue. The existing tools for
bug suffer from a relatively high false-positive rate and
low coverage of real errors.

Common server programming language such as PHP
have many dynamic features which calls for the
combination of static and dynamic bug recovery
methods for efficient finding of bugs or for correctness
verification for non-web programming languages.

2.2. Problem Statement
In this project, we will develop a software application for
the identification of bugs inside web applications caused
by data flow of unsanitized inputs from the user to sinks
(SQL queries, URL constructions, output in general,
etc.) inside web applications written in PHP. We
will use the combination of existing techniques which
are used for the static and dynamic evaluation of
security of Web applications. Particularly, we will
compute data flow information using dependence
graphs, will identify sources of sensitive data, sinks, and
at each program point maintain:

1. the taint and the sanitization status for each
variable,
2. the set of possible values of each variable,
3. the set of conditions defined on the program’s
variables that must hold, and
4. the set of possible types of each variable.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 03 | June-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 254

3. LITERATURE REVIEW

[1] Security Analysis of PHP Web Applications: presents
a new approach to discovery of bugs inside web
applications written in PHP. While being based on
known techniques, it is the first which combined them
into a single one and improved them to face the most
critical issues. It proposes precise modeling of aliasing
and taint analysis capable of detecting the most of
vulnerabilities.
[2] Finding Bugs in Web Applications: Presents a
technique for finding faults in PHP Web applications that
is based on combined concrete and symbolic execution.
The work is novel in several respects. First, the
technique not only detects runtime errors but also uses
an HTML validator as an oracle to determine situations
where malformed HTML is created. Second, we address a
number of PHP-specific issues, such as the simulation of
interactive user input that occurs when user-interface
elements on generated HTML pages are activated,
resulting in the execution of additional PHP scripts.
Third, we perform an automated analysis to minimize
the size of failure-inducing inputs. The created tool,
Apollo, implements the analysis and is evaluated on six
open-source PHP web applications.
[3] Slr: Path-sensitive: Presents a technique for detecting
semantically infeasible paths in programs using abstract
interpretation. This technique uses a sequence of path-
insensitive forward and backward runs of an abstract
interpreter to infer paths in the control flow graph that
cannot be exercised in concrete executions of the
program. It then present a syntactic language refinement
(SLR) technique that automatically excludes
semantically infeasible paths from a program during
static analysis. SLR allows to iteratively prove more
properties. Specifically, this technique simulates the
effect of a path-sensitive analysis by performing
syntactic language refinement over an underlying path
insensitive static analyzer. Finally, it presents
experimental results to quantify the impact of our
technique on an abstract interpreter for C programs.
[4] Saner: Composing Static and Dynamic Analysis:
presents a novel approach to the analysis of the
sanitization process. More precisely, it combines static
and dynamic analysis techniques to identify faulty
sanitization procedures that can be bypassed by an
attacker. The approach has been Implemented in a tool,
called Saner, and is applied it to a number of real-world
applications. Results demonstrate that it was possible to
identify several novel vulnerabilities that stem from
erroneous sanitization procedures.
[5] Static analysis of dynamic scripting languages: Has
developed a static analysis model for PHP that can deal
with dynamic language features such duck-typing,
dynamic and weak typing, overloading of simple
operations, implicit object and array creation and run-
time aliasing. The main focus of our work is alias

analysis, but we show how type inference and constant
propagation must be used to perform the analysis
effectively. We also show how SSA form cannot be used
without the presence of a powerful alias analysis.
[6] Common weakness enumeration: The 2011
CWE/SANS Top 25 Most Dangerous Software Errors is a
list of the most widespread and critical errors that can
lead to serious vulnerabilities in software. The Top 25
list is a tool for education and awareness to help
programmers to prevent the kinds of vulnerabilities that
plague the software industry, by identifying and avoiding
all-too-common mistakes that occur before software is
even shipped. Software customers can use the same list
to help them to ask for more secure software.
Researchers in software security can use the Top 25 to
focus on a narrow but important subset of all known
security weaknesses. Finally, software managers and
CIOs can use the Top 25 list as a measuring stick of
progress in their efforts to secure their software.

4. OUTLINE OF PROPOSED WORK

4.1 Scope

The project aims to develop a software application for
security assessment of large-scale Web applications. We
will use this system for the assessment of vulnerabilities
present in large Web applications having many pages for
user interactions.

The output will be indicative of any vulnerability
present in such applications. Some manual intervention
may still be necessary for the complete eradication of the
vulnerabilities.

4.1 The Methodology

4.1.1 Methods of data collection:-

 The data for the experiments will be collected from
Free and Open Source large scale Web applications such
as Moodle, Joomla etc.

4.1.2 Probable methods of data analysis:

A. OUTLINE
The main challenge of the analysis is the combination

of an arbitrary user input and the dynamism of PHP. To
address this problem, our analysis consists of the
following steps:

1. Construction of the control-flow graph (CFG).
2. Static analysis of constructed CFG.
3. Detection of vulnerabilities.
4. A path-sensitive validation of vulnerabilities.

B. MODELING OF PHP DATA STRUCTURES
To model variables, array cells, and object fields, we

use a points-to graph similar to the one introduced in
[5]. The points-to graph contains three types of nodes. A
storage node represents a symbol-table, an array, or an

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 03 | June-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 255

object. An index node represents a variable, an array cell,
or an object field. Each index node is a child of a single
storage node. Finally, a value node represents a scalar
value. Index nodes are connected with storage and value
nodes that constitute their values using value edges.

C. STATIC ANALYSIS
Our analysis uses a combination of concrete and

symbolic execution when propagating literal values

through operations. If all inputs of an operation are
concrete, the explicit version of the operation is
used, otherwise the symbolic version is used. By
using concrete operations, we reduce the
imprecision; here, we use the reference PHP
implementation as in [4] and [1]. As to modeling the
symbolic versions, we model arithmetic operations as
well as operations with strings. For modeling string
operations, we use automata-based approach.

D. DETECTION OF VULNERABILITIES

Table -1 : Potential Vulnerabilities Identified by the Analysis

E. PATH-SENSITIVE VALIDATION OF VULNERABILITIES

In this phase, for each vulnerability that is uncertain we try to prove the unfeasibility of paths leading to the

vulnerability. We identify the program points that contribute to the uncertainty of the vulnerability. These program points
correspond to (1) join points of branching statements where some branches do not lead to the vulnerability or causes of
the vulnerability are different and to (2) an access to data that cannot be certainly identified and that can lead to
the vulnerability

F. EVALUATION
To evaluate our approach, we will analyze a snippet of code from a real web application using the Pixy tool. We will

then identify sources of imprecision and show whether they can be handled by our approach by tracking it by hand.

1) Block diagram:

FIG -1: POINTS-TO GRAPH

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 03 | June-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 256

5. REQUIREMENTS

5.1. Hardware requirements:
Processor : Pentium or higher
Memory requirements : 2 GB RAM
Hard disk space : 80 GB or more

5.2. Software requirements:
Language : PHP, MySQL
Framework : Zend
Operating System : Ubuntu 12.04 (Linux), Windows XP
or Above.

5.3. Tools used:
Eclipse
XAMPP

3. CONCLUSIONS

Due to the ubiquitousness and user-friendly approach of
Web applications their security has become very
important. In this project, we will try to overcome
known shortcomings of the current tools and implement
a novel approach to address these issues. We will show
how our approach better handles some of the situations
where other tools perform not as expected or simply fail
to work and justify our claim with some proofs of tests
done on some real world web applications in PHP.

REFERENCES

[1] Hauzar et al. On Security Analysis of PHP Web

Applications. IEEE 36th International Conference,
2012.

[2] Artzi et al. Finding Bugs in Web Applications Using
Dynamic Test Generation and Explicit-State Model
Checking. IEEE Trans. on Soft. Eng., 36(4), 2010.

[3] G. Balakrishnan, S. Sankaranarayanan, F. Ivancic, O.
Wei, and A. Gupta. Slr: Path-sensitive analysis
through infeasible-path detection and syntactic
language refinement. In Static Analysis, LNCS.
Springer, 2008.

[4] D. Balzarotti et al. Saner: Composing Static and
Dynamic Analysis to Validate Sanitization in Web
Applications. S&P’2008, 2008.

[5] P. Biggar and D. Gregg. Static analysis of dynamic
scripting languages, 2009

[6] Common weakness enumeration.
http://cwe.mitre.org/top25/

BIOGRAPHIES

 Mr. Vishal Vijaykumar Parkar is a

student in the master of
Computer Science and
Technology program at
Department of Technology,
Shivaji University, Kolhapur. He is
interested in domains like web
security, web programming,
databases.

 Mr. H. A. Tirmare is an Assistant

Professor in the Computer
Science and Technology
department, Department of
Technology, Shivaji University,
Kolhapur.

His domains of interest include
but are not limited to computer
networks, web security,
operating systems, data
structures.

