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Abstract-We consider the computation of eigenvectors x = 
(x1; : : : ; xn) over the integers, where each 
component xi satisfies jxij b for an integer b. We address 
various problems in this context, and analyze their 
computational complexity. We find that different problems are 
complete for the complexity 
classes NP, PNPk , FNP//OptP[O(log n)], FPNP, PNP, 
and NPNP. Applying the results, finding bounded solutions of a 
Diophantine equation v xT = 0 is shown to be intractable. 
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1 Introduction 

Eigenvalues and eigenvectors have important applications in 
many areas, e.g. to problems in structural analysis, quantum 
chemistry, power system analysis, stability analysis, VLSI 
design, and geophysics [2]. The computation of eigenvalues 
and eigenvectors is thus an important problem, which has 
been investigated intensively in the past; see e.g. [3, 5, 11] 
and references therein. 

In this paper, we address the complexity of computing 
distinguished elements out of the in general infinite set of 
eigenvectors for a given eigenvalue of a matrix M over the 
integers Z. In particular, we consider the computation of 
eigenvectors within a box of Zn, i.e., the set of vectors v = (v1; 
: : : ; vn) such that the absolute value jvij of each 
component vi is at most b; we call such vectors b-
bounded. Observe that in programming languages, the range 
of integers is usually b-bounded for some constant b 1.As 
with the computation of eigenvectors, there is particular 
interest in computing shortest Eigenvectors, i.e., a non-
zero eigenvector v such that its length kvk, which is 
understood in terms of the L2 (Euclidean) norm, is smallest. 
For this problem e.g. the algorithm of Hastad˚ et al. [6] for 
finding integer relationships between real vectors can be 
employed, which is closely related to the Lovasz-Lenstra-
Lenstra (L3) algo- rithm [9]. Given linearly independent 
vectors v1; : : : ; vs 2 Zn, and k 0, the algorithm in [6] finds a 
vector x 2 Zn in polynomial time such that vi xT = 0 for all i = 
1; : : : ; s or reports that no  

 

such vector of length 2k exists. The vector computed is not 
shortest, but usually shorter than a vector obtained by 
simple algorithm such as a standard Gaussian elimination. 
Furthermore, the algorithm does not return a b-
bounded vector in general, and it is not clear whether the 
algorithm could be modified in this respect. 

The main contributions of the present paper can be 
summarized as follows: 

We give a precise characterization of the computational 
complexity of different problems in the context of 
computing b-bounded eigenvectors over Z. As we show, this 
problem is intractable in general. In particular, we show that 
computing a shortest b-boundedeigenvector is complete 
forFPNP and, if b is a constant, complete for the 
class FNP//OptP[O(log n)] introduced by Chen and Toda [1]. 
Few natural problems which are complete for this class are 
known so far. 

By means of this complexity characterization, appropriate 
algorithm schemes for the solution of these problems 
emerge. 

We provide several different problems, which can be used to 
establish similar hardness results for related problems. 

2 Problem Statements 

We assume tacitly that vectors and matrices are over the 
integers Z. We consider the following problems: 

P    Problem P1: Given an n n matrix M, an integer eigenvalue 
of M, a real number K, and a bound 1, does there exist a b-
bounded non-zero eigenvector x for such that kxk K?1 

This problem is the decision problem naturally associated 
with the problem of computing a shortest b-bounded 
eigenvector x. It is related to integer and quadratic 
programming problems (see [4]). We show pthat P1 is NP-
complete, and hardness holds even if K = nb, i.e., deciding 
whether anyb-bounded eigenvector exists is NP-
complete. Thus, the algorithm of Hastad˚ et al. [6] can not be 
modified to find a b-bounded nonzero integer relationship 
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among vectors v1; : : : ; vs in polynomial time. As shown in 
Section 5, this holds even if s = 1, i.e., for a single vector. 

           Problem P2: Given an n n matrix M, an integer eigenvalue 
of M, and an integer b, compute a shortest 
eigenvector x among the b-bounded eigenvectors for 
intuitively, solving this problem requires computing the 
length kxk of a shortest b-boundedeigenvector, and 
generating an eigenvector of that norm. This problem is 
complete for FPNP in general, and for FNP//OptP[O(log n)] 
if b is fixed to any constant c 1 

4 Complexity Results 

For determining the complexity of problems P1–P5, we refer 
to variants of problems involving the class- sical satisfiability 
problem SAT. Let ' = fC1; : : : ; Cmg be a set of propositional 
clausesCi on variables 

X. A truth assignment to X satisfies ', if each clause C 2 
' contains at least one literal (i.e., variable of negated 
variable) with value true. An assignment is not-all-
equal satisfying (nae-satisfying) for ', if each clause 
in ' contains two literals that have different value according 
to; clearly, each nae-satisfying assignment for ' satisfies ' in 
the standard sense. Moreover, if is an nae-
satisfying assignment, then also the complementary 
assignment, in which each variable has opposite truth value, 
is nae-satisfying. 
Let ' = fC1; : : : ; Cmg be an instance of 3SAT, i.e., a set of 
propositional clauses Ci = i;1_ i;2_ i;3, 

i= 1; : : : ; m on variables X = fx1; : : : ; xng. Then denote 
by '0 the set of the following clauses: 

xj _ xj _ zj and xj _ xj _ :zj, for each j = 1 : : : ; n, 

i;1 _ i;2 _ wi and 3;i _ x0 _ :wi, for each i = 1; : : : ; m 

where x0, all zj, all xj , and all wi are fresh variables and i;j = 
x`, if i;j = x`,and i;j = x` if 
i;j = :x`. 

The following is easily verified. Let be an nae-
satisfying assignment for '0. If (x0) = false, then 

, restricted to X, satisfies '; if (x0) = true, then the 
complementary assignment , restricted to 

X, satisfies '. On the other hand, if an assignment satisfies ', 
then is extendible to at least onenae-satisfying assignment 
of '0 in which x0 = false. Thus, we obtain the following. 

Lemma 4.1 Let ' be any 3SAT instance on variables X. Then, 
the nae-satisfying assignments of '0such that (x0) = false, 

correspond on the variables X 1-1 to the satisfying assignments 
of '. 

As a consequence, deciding whether a SAT instance is 
satisfiable under nae-satisfaction(NAESAT) is NP-hard [4], 
even if all clauses have size 3 (NAE3SAT). 

We now turn to Problem P1 from above, and obtain our first 
result. 

5 Discussion and Conclusion 

The results that we have derived in the previous section may 
be profitably used to derive similar complex- ity results for 
related problems. As an example, we consider the problem of 
finding integer relationships between numbers [6]. Given a 
real vector v, find a vector ofintegers x such that v xT = 0. 
If v is an in- teger vector, then the resulting Diophantine 
equation always has nonzero solutions. Finding a b-
bounded nonzero x which satisfies this equation is 
intractable, however. 

 
Theorem 5.1 Given an integer vector v = (v1; : : : ; vn) and b 
0, deciding whether there is a nonzero-bounded vector x 2 
Z such that v xT =0 is NP-complete. Hardness holds for b fixed 
to any c 1. 

Proof. Obviously, a proper x can be guessed an checked in 
polynomial time. For the hardness part, we reduce 
problem P1 to this problem. Rewrite M xT = xT as M0 xT = 0, 
where M0 = M I (I 
is the identity matrix). Let m = max jm0i;jj be the largest 
absolute value in M0. Define D = b n m + 1, 
i;j 
and let the vector v = (v1; : : : ; vn) be 

vj = ∑ Di−1mi,j 

By the same reduction, similar complexity results as for 
problems P2-P5 can be established for analogous problems 
on a single Diophantine equation v·xT = 0. In this paper, we 
have considered the computational difficulty of problems 
that arise in the context of computing bounded integer 
eigenvectors for a given integer matrix M and eigenvalue λ.  
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