
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

p-ISSN: 2395-0072 Volume: 02 Issue: 03 | June-2015 www.irjet.net

© 2015, IRJET.NET- All Rights Reserved Page 917

Augmenting Speed of SQL Database Operations

Using NVIDIA GPU

Sandip M. Walunj1, Rajendra A. Patta2, Anuraj R. Kurup3, Hrishikesh S. Bajad4

1,2,3,4 Department of Computer Engineering, Sandip Institute of Technology & Research Centre, Maharashtra, India

---***---

Abstract- In the early stages GPU were used to develop
graphic processing algorithms, since the development
of new parallel computing frameworks and the recent
development in the GPU architectures non-graphic
algorithms can also be implemented. Various
advancements in the parallel databases have proved to
be more efficient over primitive CPU based databases.
This system is developed using CUDA framework
provided by NVIDIA which is more approachable and
appreciated by programmers. The main focus of the
automated system is to optimize SQL SELECT queries by
offloading it to the GPU. Algorithms were implemented
on different data sets with the assistance of a
programmable GPU. The results of the implemented
system implies that using GPU as a co-processor, a
considerable amount of improvement in the execution
of database operations were achieved compared to the
traditional CPU based database systems. The results
obtained by the system show speedup of about 20x.
These results show that GPU can be exploited to achieve
high level of parallelism and throughput in the
execution of database operations.

Key Words: CUDA, Databases, GPU, Parallelism, Query

processing, SQL.

1. INTRODUCTION
Originally GPUs were developed purely for the function of
graphic acceleration. Due to the recent developments in
the architecture of GPUs vast numbers of additional
computational tasks are processed with the help of GPUs.
While CPUs were built to process 4 or maybe 8 threads at
a time, GPUs were developed with the perspective of
simultaneously managing thousands of threads efficiently
and provide with throughputs in the range of 100 GBps
[2]. Thus more number of programmers are using this
computation power to accelerate different applications.
These accelerations are observed considering the fact that
the data has to be transferred to the GPU from the memory
and back for processing.

The task of parallelizing the database operations
was achieved using the CUDA framework developed by
NVIDIA which supports the stream programming
paradigm. The framework provided in CUDA provides the
functionality of executing a single kernel function multiple
number of times simultaneously by converting each call

into a thread and process on a block of data. Stream
programming is achieved by organizing large number of
processor cores of the GPU into streaming multiprocessor
groups. The limitations occurring in these kind of
processing is the limited memory size and data transfer
between host and GPU which can be overcome by the
future upcoming architectures in the market. A wide
number of applications can fit into the domain of this
research. Also, SQL is a widely popular database query
processing language is used which is suitable for database
processing. Complex relational operations on data set like
join and aggregation can easily be implemented using SQL.
Little or no change has to be done in the source code by
the programmer to implement it thus making the task of
parallelising the query execution very simple.

Through the implementation of the suggested
system it is demonstrated that database operations on
huge data sets can be accelerated by the using the GPU as a
co-processor. The comparison between the results
obtained from the multi-core CPU based database
implementations and the highly optimized GPU based
database system implemented in this research. The results
are based on basic SELECT queries which are compiled
into an opcode language which can be executed either on a
CPU or a GPU depending on the requirement. The system
not only simplifies the GPU data processing but also the
results obtained by the system suggests that GPU based
systems significantly outperforms the conventional
ordered CPU execution.

2. METHODOLOGY
The system includes a query parser which accepts SQL
queries in the form of input and the output will be in the
form of intermediate code or opcode. The virtual machine
will execute the opcode, process the records and generate
a result set. The Tablet structure will divide the datasets
for compatibility with the GPU memory. This will help us
to run queries on datasets larger than the GPU memory
the main objective of our system is to compare execution
on CPU and GPU. This can be done by building an API for
executing certain SQL queries on GPU.

The system model developed in this paper
consists of a Query Parser which accepts SQL queries as
input and provides program in discrete steps called
opcodes as output. The opcodes are queries broken down
into steps consisting of four arguments with the first three

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

p-ISSN: 2395-0072 Volume: 02 Issue: 03 | June-2015 www.irjet.net

© 2015, IRJET.NET- All Rights Reserved Page 918

being integer values and the fourth being any type. It has a
Virtual Machine to execute the opcode program, to process
data records and gives a result set as output.

The Virtual Machine is written on GPU as well as CPU. The
work of managing groups of tablets in tables is done by
Table Functionality and the code used to manipulate so as
to add and read data to the tablet data structure is done by
Tablet Functionality. The Tablet structure divides the
datasets for compatibility with the GPU memory. This
helps in execution of queries on datasets larger than the
GPU memory. It consists of a module of Memory
Functionality which manages the tablets in memory space
which is pre-allocated. Database functionality is used to
assure non-volatile data storage by writing metadata into
a database file. It also does the work of paging tablets in
between disk and memory. The speed comparison
between the GPU and CPU can be done to give result
analysis.

3. LITERATURE SURVEY
On the basis of previous work in the foundational fields to
study what research has been done in the field of general
GPU Databases applications is important. The general
purpose GPU Databases have been studied and developed
in two different classifications. Few of the study have been
partial implementations whereas a few were development
to existing traditional database systems which explored a
particular aspect of the database system. One another field
in which study has been done mainly is implementation of
database systems which are done on the GPU itself. Some
of the additions have been done with the help of
PostgreSQL database system [3]. The functions of GPU are
written as procedures which are called by PostgreSQL. A
particular procedure is called to manipulate an image from

a variety of images which are retrieved from the database.
It is done by GPU-powered procedure which is stored in
the GPU and the results are provided to the users.

One of the areas where research has been done is
relational joins [4]. This showed the potential of the GPU
in high speed execution of joins of multiple tables. In this
research, database primitives for scatter, gather, split, scan
and sort operations which were used for developing join
algorithms as constructs which showed that using the GPU
to perform operations such as join was feasible.

Chang demonstrated that by using column-major
storage for the database tables greatly improved the
overall performance of data transfer from and to the GPU
[5]. In the study existing functions of CUDA and its
libraries along with newly added data structures as well as
parameters to the existing vanilla SQLite implementation
to replace serial functionality which existed with the help
of GPU powered parallel functionality. The process helped
in acceleration of SELECT queries on data of integer value
in a table as well as sorting and grouping of data by using
this functionality. One of the most important aspects of the
research was the discovery that for small number of
records GPU implementation was slower as compared to
CPU implementation.

In 2004, Govindaraju along with few others were
the first few who investigated GPU as coprocessor for
query processing in a database [6]. They were able to
accelerated database operations like selections and
aggregations. The efficiency of GPUs to perform general
purpose work using CUDA or other libraries and
frameworks provided new approaches for development.
He and others investigated algorithms for join processing
in databases with the help of GPUs [7], as well as for few
other relational operators [8]. They also investigated
optimization of transactions by using GPUs in the
prototype GPUTx. They grouped multiple transactions
together and executed all of it concurrently on the GPU.
The observation was an improved throughput of 4 to10
times compared to a CPU-based processing [9].

4. IMPLEMENTATION
Our model of execution involves the transfer of dataset
which is residing on CPU to GPU. Here each row of dataset
is assigned to a thread for parallel execution. The identity
of each row is maintained by thread indexing. it includes
partition of rows to available threads and process them on
SELECT WHERE condition. The result set is generated by
synchronizing the threads and sending it back to the CPU.
Our approach focuses on implementing the dataset by
using indexes.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

p-ISSN: 2395-0072 Volume: 02 Issue: 03 | June-2015 www.irjet.net

© 2015, IRJET.NET- All Rights Reserved Page 919

Fig 2. GPU Processing

Results Analysis

Fig 3. Speedup comparison- CPU Vs GPU

Speedup of about 20x over CPU query execution was
observed overall as seen in fig 3. The speedups are
calculated considering the data transfer time between CPU
and GPU along with the computation time. It can be
observed that with the increase in size of data set, the GPU
performance shows considerable growth.

Thus when the dataset size is relatively small CPU based
processing is advised over GPU whereas in case of
working with massive datasets GPU based processing
would be a finer solution.

Table 1. Performance
Analysis

types. The table provides us with the statistical data of
processing time on a CPU as well as on a GPU. The data
transfer time is calculated to measure the speedups with
and without the transfer time. It is evident from the table
above that transfer between the GPU and CPU is a huge
bottleneck in terms of speedups. In spite of the latency due
to transfer from GPU to CPU and vice versa, the speedups
are quite impressive.

5. CONCLUSIONS
The findings of this paper suggests that, by offloading the
database queries to the GPU, it is possible to achieve
effective acceleration of database operations. The results
obtained by the GPU based optimization showed a
progressive speedup of about 20x on an average as
compared to the CPU based processing. It can also be
concluded that when a dataset size is comparatively small,
CPU based processing should be used whereas in case of
massive datasets GPU based processing provides great
speedup with optimized result. Even though only a
SELECT SQL queries are considered in the paper, it
provides bases to show that other queries can also be
implemented to achieve similar speedups. SQL is a simpler
and more widely used system which can be used to gain
access to GPU. The features of each query along with the
data type being queried as well as the result set size were
important aspects in the comparison of CPU and GPU
execution factor. Based on the results of our system, it can
stated that the data transfer between GPU and CPU
memory is not much of a significant barrier in data
processing with GPU in comparison to the results obtained
still it has to reduce to an extent to provide better results
than results already obtained. The results of the system
are intended to become better with upcoming series of
NVIDIA GPUs. Future research could improve the latency
occurred due to transfers from host to GPU memory.
Another prospective is that the future of upcoming graphic
processing hardware is able to access the host memory
more conveniently which would enhance the current
results. Although a lot of future study is required, it can be
stated that with the help of GPU hardware SQL query
processing can be accelerated significantly.

The performance analysis as seen in Table 1 shows various
speedups based on the query attributes of different data

Queries

attribute

CPU

Time

(sec)

GPU

Time

(sec)

Transfer

Time

(sec)

Speedup

w/o

Transfer

Speedu

p with

Transfer

Int 2.384 0.056 0.025 48.11 18.89

Float 3.527 0.059 0.021 62.16 22.68

Char 1.056 0.029 0.036 40.02 16.19

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

p-ISSN: 2395-0072 Volume: 02 Issue: 03 | June-2015 www.irjet.net

© 2015, IRJET.NET- All Rights Reserved Page 920

REFERENCES

[1] Rajendra A. Patta, Anuraj R. Kurup, Sandip Walunj,

“Enhancing Speed of SQL Database Operations using GPU,”

in IEEExplore International Conference on Pervasive

Computing, Pune, India 2015, DOI

10.1109/PERVASIVE.2015.7087144.

[2] Peter Bakkum, Srimat Chakradhar,”Efficient data

management for GPU databases” NEC labs, Princeton, USA,

Mar. 2010

[3] Tim Child, Parallel Image Search Using PostgreSQL and

PgOpenCL Presentation, PGCon 2011: The PostgreSQL

Conference, Ottawa, 2011.

[4]Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga K,

Govindaraju, Qiong Luo, and Pedro V, Sander, “Relational

Joins on Graphics Processors,” 2008 ACM SIGMOD

International Conference on Management of Data

Vancouver, 2007, pp. 511-524

[5] R. Kai Sheu, Y. Chang, J. Hsu and S. Yuan, “Scaling

Database Performance on GPUs,” in Information Systems

Frontiers vol. 14, 2012, pp. 909-924.

[6] N. K. Govindaraju, Lloyd B., Wang W., Lin M., and

Manocha D, “Fast computation of database operations

using graphics processors,” in ACM SIG GRAPH 2005

Courses, NY, 2005, pp. 206.

[7] He B. et al., “Relational query co- processing on

graphics processors,” ACM Trans. Database System., vol.

34, no. 4, 2009, pp. 139.

[8] B. He and J. X. Yu. “High-Throughput Transaction

Executions on Graphics Processors,” PVLDB, vol.4, no. 5,

2011, pp. 314-325.

[9] B. He and J. X. Yu. High-Throughput Transaction

Executions on Graphics Processors. PVLDB, 4(5):314{325,

2011.

[10] P. Trancoso, D. Othonos, and A. Artemiou, “Data

parallel acceleration of decision support queries using

cell/be and GPUs,” in Proc. of 6th ACM Conf. on

Computing frontiers, ACM, 2009, pp. 117–126.

[11] A. di Blas and T. Kaldeway, “Data monster Why

graphics processors will transform database processing,”

IEEE Spectrum, Sept. 2009.

BIOGRAPHIES

Prof. Sandip M. Walunj,
Assistant Professor,
Department Computer Engineering,
Sandip Foundation's
Sandip Institute of Technology &
Research Center, Nashik

Rajendra A. Patta
Department Computer Engineering,
Sandip Foundation's
Sandip Institute of Technology &
Research Center, Nashik

Anuraj R. Kurup
Department Computer Engineering,
Sandip Foundation's
Sandip Institute of Technology &
Research Center, Nashik

Mr. Hrishikesh S. Bajad,
Government College of Engineering,
Amravati, Maharashtra
email: hrishikeshsbajad@gmail.com

mailto:hrishikeshsbajad@gmail.com

