
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 393

A SYNCHRONIZATION ALGORITHM FOR MOBILE DATABASES

USING SAMD

1 P.Kalyanakumar 2 A.Sangeetha

1 Asst Professor, Department of Computer Science Latha mathavan Engineering College
2 Asst Professor, Department of Information Technology PSNA college of Engineering and Technology

--***---

Abstract - Synchronization Algorithms based on

Message Digest) algorithm based on message digest in

order to facilitate data synchronization between a

server- side database and a mobile database. The SAMD

algorithm makes the images at the server -side

database and the mobile database uses message digest

tables to compare two images in order to select the

rows needed for synchronization. If the two images are

different, the synchronization progresses according to

synchronization policy. The SAMD algorithm does not

use techniques that are dependent on specific database

venders; neither does it use triggers, stored procedures

or timestamps. The SAMD uses only the standard SQL

functions for the synchronization. Therefore the SAMD

algorithm can be used in any combinations of server-

side database and mobile database because of its

independence of database vender. This feature is

important in order to build efficient mobile business

systems because the upcoming mobile business

environment has heterogeneous characteristics in

which diverse mobile devices, mobile databases, and

RDBMS exist.

Key Words: Mobile Device, Synchronization, Mobile

Database

1. INTRODUCTION

Recent advances in mobile technology and equipment

have led to the emergence of a new computing

environment and a variety of small sized mobile devices

such as PDAs (personal digital assistants), smart mobile

phones, HPCs (handheld PCs) and Pocket PCs have been

popularized. As various network technologies are

increasingly being associated with such mobile devices,

the processing of business information can be available

using mobile devices. As a result, business models that rely

on mobile technologies are appeared [1].

Mobile devices do not have much computing power and

rely on batteries. Additionally, constant access to network

is difficult due to narrow bandwidth [2] [3]. Therefore, it is

not easy to process a large size of stored data and

maintain a continuous connection with the server-side

database. For these reasons, mobile devices have mobile

databases in order toThe corresponding author is Chang-

Joo Moon.

Mi-Young Choi, Eun-Ae Cho and Doo-Kwon Baik are
with the Software System Lab. in the College of
Information and Communication, Korea University, Seoul,
Korea (e-mail: miche11e@korea.ac.kr, eacho@korea.ac.kr,
baikdk@korea.ac.kr) Dae-Ha Park is with the Divi. of IT
and Media , Korea Digital University, Seoul, Korea
(summer69@kdu.edu) Chang-Joo Moon are with the
Department of Aerospace Information Engineering,
Konkuk University, Seoul, Korea
(cjmoon@konkuk.ac.kr)achieve stable data processing.
Mobile devices download replications of limited data from
a connected server-side database using a synchronization
device that has a stable wire communication function.
Mobile devices process various tasks using the data
downloaded in an off-line state. The work on the network
disconnected condition is a crucial point for mobility
support [4]. In a disconnected environment, there are
inevitable inconsistencies between the server-side
database and the mobile database. Synchronization
techniques can solve the data inconsistencies and
guarantee the integrity of the data. Consequently,
synchronization is an essential subject in mobile device
computing environments [5].

Commercial DBMS venders offer various solutions to

data synchronization in a mobile environment [6], [7], [8].

However, these solutions are not independent of the

server-side database because they use database

dependent information such as metadata or use specific

functions of server-side database such as trigger and time

stamp. In other words, the mobile database vender should

be equivalent to the server-side database vender. The

solution of operating a separate synchronization server in

the middle tier is independent of the server-side database

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 394

but dedicated to the mobile database. That is, the

synchronization solution and the mobile database should

be the identical vender product. Additionally, when a

client programmer develops mobile applications that are

embedded in mobile devices, the developer should uses a

particular library that is provided by the vender of mobile

database or modify existing mobile applications for

synchronization process. Because of these restrictions, the

extensibility, adaptability and flexibility of mobile business

systems are markedly decrease. This problem must be

solved in order to build efficient mobile business systems

because upcoming mobile environments will have

heterogeneous characteristics in which diverse mobile

devices, mobile databases, and RDBMS exist.

This paper suggests SAMD (Synchronization Algorithms

based on Message Digest) in order to resolve the problems

mentioned above. SAMD resolves synchronization

problems using only standard SQL queries as certified by

the ISO (International Organization for Standardization).

This is followed by a possible synchronization of any data

combination regardless of the kind of server-side database

or mobile database. The SAMD therefore would provide

extensibility, adaptability and flexibility. The SAMD makes

the images at the table of the server-side database and the

mobile database using a message digest algorithm; then

the images, and the message digest values, are saved in the

message digest tables on both sides. The SAMD algorithm

compares two images in order to select the rows needed

for synchronization. If the value of message digest

regarding identical rows is different for both sides, it

means the duplicated rows have been changed and

synchronization is necessary using SAMD. Message digest

is used to detect falsification of data transferred mainly via

security protocols. In this procedure, because a large

volume of data is compressed into a small volume, we can

simplify the detection of data inconsistencies and

minimize wasted storage space. Message digest functions

work fast even with limited resources, so that they reduce

the burden placed on mobile devices that have small

computing power.This paper is organized into several

sections. Section 2 introduces the background knowledge

that is needed to understand this paper. A proposed SAMD

synchronization algorithm based on message digest is

explained in Section 3. In Section 4, performance

evaluation and quality evaluation is achieved in

implementing SAMD. Finally, Section 5 concludes the

paper.

2. BACKGROUND KNOWLEDGE

2.1. Synchronization Framework

Fig. 1 represents a synchronization framework using a

synchronization server in a mobile business environment.

The whole framework consists of a server-side database,

synchronization server (AnySyn) and multiple mobile

devices with internal mobile databases.

The server-side database maintains all of the data

required for business, and the mobile database downloads

copies of data the user needs from the server-side

database. The synchronization server is located between

the two databases to synchronize the data and manage

additional information required for synchronization. The

AnySyn synchronization server performs synchronization

based on the SAMD algorithm. The synchronization policy

is established in AnySyn, and the load caused by accessing

the server-side database is minimized by operating a

connection pool. Every mobile device uses a separate

toolkit to access the AnySyn server over a wired network

to perform synchronization.

2.2. Rows Inconsistency

An inconsistency refers to a state in which the

published data in the server-side database and the

subscribed data in the mobile database carry different

values due to a change at either side. The two databases

add, delete and modify data independently, which

makes inconsistency inevitable. TABLE I displays every

case for an inconsistency for a single row.

Among the 16 cases indicated in TABLE I, Cases 6, 7,

8, 10 and 14 include the ADD operation, which cannot

occur for a single row. For example, in Case 7 the row

added at the server side is different from the row

modified at the client; therefore, it cannot be considered

an inconsistency. Case 7 is equivalent to Case 3 and

Case 5 occurring independently. Similar reasoning can

be made for Cases 6, 8, 10 and 14, so SAMD does not

consider the five cases.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 395

2.3. Message Digest

Message digest consists of a unidirectional hash

function that maps a message of a random length to a

fixed-length hash value. Message digest h is created by the

hash function H, which can be expressed as follows:

h = H(M)

M is a message of a random length and H(M) is a fixed-

length message digest. Even a single bit changed in the

message causes a change of message digest value [9]. Fig. 2

demonstrates how this message digest mechanism can be

applied to a relational database to examine data identity

between rows of two tables.

Data in two rows are identical if two rows in Tables A
and B have identical message digest values. If the two
values are different, it means that the two rows have one
or more different column values. Accordingly, this method
can be useful in detecting inconsistency between two
rows. Once a row with an inconsistency is detected, the
row is copied using the primary key in the direction of
synchronization according to the synchronization policy.
This synchronization algorithm identifies a modified row
without relying on the database's internal functions, logs
or metadata to enable synchronization that is independent
of the database vender.

3. SAMD SYNCHRONIZATION ALGORITHM

3.1. Objective of SAMD

In order to guarantee independence of database vender

and synchronization solution vender in a mobile business

environment that has diverse mobile devices, mobile

databases, and RDBMS, the SAMD synchronization

algorithm satisfies the following objectives.

O1) Independence of venders.

- Does not use metadata or internal functions dedicated

to a particular database.

O2) Synchronization using only standard SQL

statements.

- Perform synchronization using only standard SQL

queries and data manipulation language specified in

ISO standard. Therefore, any data processing using

trigger is not allowed.

O3) Disallows schematic modification of data table of

the server-side database.

- The data table schema cannot be modified to add

data necessary for synchronization. In other words,

synchronization must be performed independent

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 396

from the existing data table schema. Therefore,

additional information such as time stamps cannot

be added to the data table.

O4) Disallows adding restrictions in implementing

applications.

- There can be no restrictions such as performing

additional works to an application code or having

to use a specific library in order to perform

synchronization.

-

3.2. SAMD Synchronization Algorithm

Fig. 3 displays the table schema of the server-side

database and the mobile database where the SAMD

synchronization algorithm is applied. Both databases have

a data table (DSDT: Database Server Data Table, MCDT:

Mobile Client Data Table) and a message digest table

(DSMDT: Database Server Message Digest Table, MCMDT:

Mobile Client Message Digest Table). The data table

contains the business data, and the message digest table

stores the message digest value from the data table. The

message digest table consists of a PK column of data table,

message digest value (MDV) column, flag (F) column and

mobile device ID (Mid) column. The flag column signals an

inconsistency that has occurred in the corresponding

column; therefore, the flag column is used to identify a

row that requires synchronization. The mobile device ID

is a unique number of the mobile device, so this column is

used to identify a mobile device that requires

synchronization.

In Fig. 3, if a row's PK value is A1, this value is identical

to the two message digest values and there is no need for

synchronization. However, if a row has a PK value of C1,

the value of MDV in MCMDT is different from the value of

MDV in DSMDT and the MCMDT flag value is 1.

Consequently, synchronization is necessary. The

synchronization process is performed for each row to

resolve all of the inconsistencies mentioned in Section

II/B. For example, if there is an inconsistency in row C1,

synchronization takes place from the mobile database to

the server-side database and DSDT's PK C1 row is

replaced with the MCDT's C1 row.

The synchronization algorithm consists of

Synchronizations 1, 2 and 3, as shown in Fig. 3.

Synchronizations 1 and 2 synchronize the data table and

message digest table. Therefore, the two are identical

synchronization algorithms applied to different tables.

Here, the message digest values that are created with each

row value of the data table, and the message digest values

of the message digest table, are compared. If the values are

identical, there has been no change in the data and

synchronization is not necessary. If the values are

different, it means that the data table value has been

changed, in which case the message digest table has to be

updated with new message digest values and the flag has

to be set to 1. The flag value is used to identify a row that

needs synchronization. The server-side database has one

DSMDT for every DSDT. Although the size of the MCMDT is

smaller than that of the DSMDT, there is an MCMDT for

every mobile device that has a unique ID. It is very

inefficient to perform Synchronization 2 for every row of

the DSDT every time there is a synchronization request

from a mobile device. Therefore when the mobile device

requests synchronization, the mobile device ID value is

sent to the server-side database and then the SAMD

algorithms select the row from DSMDT whose value of Mid

column is the same as the mobile device ID value and

Synchronization 2 is only applied to the selected rows. For

example, a mobile device whose mobile device ID value is

‘md1’ requests synchronization, the rows whose value of

Mid column is ‘md1’ are selected and then only used in

Synchronization 2.

After SAMD algorithms analyze the type of inconsistency

using the flag values of both messages digest tables,

primary key, which is used to identify the row. Therefore,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 397

Synchronization 3 is performed between two data tables

for each inconsistent type. Upon completion of
synchronization, the flag of the synchronized row is set to
0 in the message digest table.

Most mobile devices have limited resources, and the

load on the device should be minimized during the

synchronization process. Accordingly, all message digest

tables are located in the server-side database to

economize storage space of the mobile device, as shown in

Fig. 3, while there is the load caused by accessing the

network in Synchronization 1 but the data size of MCDT is

smaller than the server. Furthermore, the MCDT data

necessary for Synchronization 1 is sent to the server-side

database in a single transmission over a wired network

using an SQL query capable of batch processing. After this

point, there is no load on the mobile device, which reduces

the load caused by network access in the Synchronization

1 stage.

The SAMD synchronization algorithm must keep the

following restrictions.

1) Every database table must have a primary key.

2) The primary keys of the data table and the message

digest table have an identical value for a given row.

3) A new row is inserted into the mobile database and

another one into the server-side database; the

primary key values of the two rows cannot be

identical.

The relational database model involves every table having

a restrictions 1) and 2) are basic conditions. Restriction 3)

implies that there is no integrity collision for the primary

key during the synchronization process between the

mobile database and the server-side database. Even

though identical primary key values can be inserted at

both ends, this problem is not taken into consideration

since it can easily be resolved by application-level

processing or the synchronization policy.

Fig. 4 exhibits the flow chart for the SAMD

synchronization algorithm.

Steps S1~S3 represent the Synchronization 2 stage of

Fig. 3. When the DSDT and DSMDT are FullOuterJoined,

DSDT rows, for which Steps S1, S2 and S3 should be

applied, can be identified by dangling rows.

Step S1 is the synchronization process with the DSMDT

when a row of the DSDT has been modified. The message

digest value is calculated for the DSDT row, which is

compared to the MDV column value of the DSMDT. If the

two values are identical, it means that there has not been

a change at the DSDT row, and vice versa. If a change is

detected, DSMDT's MDV column value is replaced with

the message digest value of DSDT's row, and the flag

column is set to 1. Steps S2~S3 are the synchronization

process for cases in which a row is inserted into or

deleted from the DSDT. If a row is inserted, its primary

key and message digest values of the new row are added

in the DSMDT. For a deleted row, its MDV column value is

set to NULL in the DSMDT. If the row

is deleted without setting the column value to NULL, it is

indistinguishable from inserting a row into the DSDT.

Steps S4~S6 indicate the Synchronization 1 stage of Fig.

3. This stage involves synchronizing the MCDT and

MCMDT; the basic algorithm is identical to that used in

Steps S1~S3. However, the MCDTT and MDMDT are

internal data tables of different vender databases that are

physically separated, so FullOuterJoin as in Steps S1~S3 is

not feasible. In this case, a temporary table has to be

created for the MCDT table to be copied to the server side,

and Synchronization 1 process is performed, after which

the copied data is deleted. This single transaction by batch

processing guarantees independence of the SAMD

algorithm for the database vender.

Steps S7~S12 display the Synchronization 3 stage of Fig. 3.

When the DSMDT and MCMDT are FullOuterJoined, the

rows that are subject to synchronization and the

inconsistent types are identified using the dangling rows

and the DSMDT and MDCMDT flags and then the

synchronization between the DSDT and MCDT is achieved.

Step S7 involves synchronizing a modified row or one

deleted from the MCDT with the DSDT. Under the D1

condition, Step S7 searches for a row with an MCMDT flag

value of 1 and a DSMDT flag value of 0. The flag values

indicate that the row was modified or deleted from the

MCDT. A null MDV column of the MDMDT signifies a

deletion from the MCMT. Otherwise, there has been a

modification. In the case of deletion, rows that correspond

to the rows deleted from the MCDT should be deleted from

DSDT, DSMDT and MDMDT. In the case of modification,

the DSDT row value is replaced with the MCDT row value,

and DSMDT row value is replaced with the MDMDT row

value. Upon completion of synchronization, the flag values

of the synchronized rows of the DSMDT and MCMDT are

set to 0. This process resolves the inconsistency cases C3

and C4.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 398

Steps S4~S6 indicate the Synchronization 1 stage of Fig.

3. This stage involves synchronizing the MCDT and

MCMDT; the basic algorithm is identical to that used in

Steps S1~S3. However, the MCDTT and MDMDT are

internal data tables of different vender databases that are

physically separated, so FullOuterJoin as in Steps S1~S3 is

not feasible. In this case, a temporary table has to be

created for the MCDT table to be copied to the server side,

and Synchronization 1 process is performed, after which

the copied data is deleted. This single transaction by batch

processing guarantees independence of the SAMD

algorithm for the database vender.

Steps S7~S12 display the Synchronization 3 stage of Fig.

3. When the DSMDT and MCMDT are FullOuterJoined, the

rows that are subject to synchronization and the

inconsistent types are identified using the dangling rows

and the DSMDT and MDCMDT flags and then the

synchronization between the DSDT and MCDT is achieved.

Step S7 involves synchronizing a modified row or one

deleted from the MCDT with the DSDT. Under the D1

condition, Step S7 searches for a row with an MCMDT flag

value of 1 and a DSMDT flag value of 0. The flag values

indicate that the row was modified or deleted from the

MCDT. A null MDV column of the MDMDT signifies a

deletion from the MCMT. Otherwise, there has been a

modification. In the case of deletion, rows that correspond

to the rows deleted from the MCDT should be deleted from

DSDT, DSMDT and MDMDT. In the case of modification,

the DSDT row value is replaced with the MCDT row value,

and DSMDT row value is replaced with the MDMDT row

value. Upon completion of synchronization, the flag values

of the synchronized rows of the DSMDT and MCMDT are

set to 0. This process resolves the inconsistency cases C3

and C4.

Step S8 involves synchronizing the modified or deleted

rows from the DSDT with the MCDT. This step is identical

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 399

to the algorithm of Step S7, but synchronization takes

place from the DSDT towards the MCDT. Upon completion,

this process resolves the inconsistency cases C9 and C13.

When modification or deletion occurs in both DSDT and

MCDT, Steps S9 and S10 perform synchronization in the

direction from the DSDT towards the MCDT or in the

reverse direction, according to the synchronization policy.

The rows subject to synchronization are those with flag

values of 1 for both the DSMDT and MCMDT. Four cases

should be considered in Steps S9 and S10, as shown in

TABLE II.

In Step S9, synchronization is performed form the MCDT

towards the DSDT. In Case 1, identical rows of the DSDT

and MCDT are deleted, so the corresponding rows of the

DSMDT and MCMDT should be deleted as well. For Case 3,

the rows that correspond to those deleted from the MCDT

after completion of Case 1 should be deleted from the

DSDT. Once the two cases are complete, the inconsistency

cases C12 and C16 are resolved. Cases 2 and 4 modify the

row in DSMDT with the modified row of the MCMDT. For

Case 2, since the row in the DSDT is deleted, the MCDT

row value is inserted into the DSDT. For Case 4, since the

row in the DSDT is modified, the corresponding row in the

DSDT is replaced with the MCDT row value. Once the two

cases are complete, the inconsistency cases C11 and C15

are resolved.

For Step S10, synchronization takes place from the

DSDT towards the MCDT. The algorithm is identical to that

used in Step S9 with a different synchronization direction.

Upon completion of Step S10, the inconsistency cases C15,

C16, C12 and C11 are resolved.

Step S11 involves reflecting the row inserted into the

MCDT to the DSDT. Step S11 is applied to the row for

which the flag value of the MCMDT is 1 and which is a

dangling row. The rows inserted into the MCDT and

MCMDT are also inserted into the DSDT and DSMDT.

Completing the process resolves the inconsistency case C2.

Step S12 reflects the row inserted into the DSDT on the

MCDT. The algorithm is identical to that used in Step S11

but with a different synchronization direction. Completion

of this step resolves the inconsistency case C5.

Executing the SAMD algorithm resolves all of the

inconsistencies listed in TABLE I through the

synchronization process. Therefore, it can be concluded

that the SAMD algorithm synchronizes every possible form

of inconsistency.

4. IMPLEMENTATION AND EVALUATION

4.1. Performance Evaluation

The SAMD algorithm was implemented using JAVA and

were linked with databases using JDBC (Java Database

Connectivity). The commercial synchronization solution,

which is vender-independent of server-side database and

has middle-tier architecture, was used in order to

compare SAMD. Because the properties of the commercial

synchronization solution and SAMD are similar, this

comparison is reasonable. As for the message digest, JCE

(Java Cryptography Extension) [10] was used.

For performance evaluation, the commercial RDBMS and

mobile database were installed on one machine to

eliminate the network effect factors. First, 5000 randomly

generated rows were inserted into RDBMS, sent through

synchronization and the same 5000 rows were inserted

into mobile database. Then, we inserted 100 rows into

RDBMS, and then inserted another 100 rows into mobile

database. Afterwards, 100 rows were deleted from mobile

database and another 100 rows modified. The modified

and deleted data were programmed to be equally spaced

among the 5000 rows. In this condition, performance was

evaluated by comparing the synchronization time of SAMD

and the commercial synchronization solution. We

evaluated synchronization time ten times using different

data in the same conditions and calculated the average. As

shown in TABLE III, the performance evaluation result

indicates that SAMD is faster than the commercial

synchronization solution by an average of 0.64 seconds.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 400

For the commercial synchronization solution, a

synchronization SQL or a JAVA script must be written

[11]. This is a very cumbersome and inconvenient process

that requires a substantial amount of time to become

familiar with. Furthermore, some cases in TABLE I are not

supported. Therefore, our evaluation could not be

performed for all cases listed in TABLE I but only for the

four cases mentioned above. The commercial

synchronization solution requires that additional data

table, procedures and triggers be created for

synchronizing with a server-side database that is not a

same vender of the commercial synchronization solution

[11]. There are no such requirements for the SAMD

algorithm. Whereas the vender of the commercial

synchronization solution and the mobile database must

be the same, but SAMD mandates no restrictions

regarding the types of the server-side databases or the

mobile databases. Therefore, there is an advantage in

terms of having a wide use property in addition to

performance. However, SAMD maintains a separate

message digest table, which is a disadvantage from the

perspective of storage efficiency. However, since large

scale storage is relatively inexpensive and scalable, this is

not a major issue. SAMD only offers implementation of the

essential elements for synchronization and not supports

various other aspects required for a commercial product.

In addition, it lacks sufficient generality to be applicable

in an actual working environment. Therefore, it may not

be completely appropriate to compare SAMD with a

commercial product. Under the circumstances, however,

SAMD does not fall far behind the commercial

synchronization solution and there are the advantages

explained above including user friendliness, simple

synchronization and complete vender independence.

4.2. Quality Evaluation

A SAMD algorithm was designed to maintain the

objective of algorithm as mentioned in part A of Section

III. The mentioned objectives are problems that existing

commercial synchronization products have, so if these

objectives are not achieved, the wide use property for

application of synchronization algorithm would not be

fulfilled. The widely used technologies for mobile

database synchronization are timestamp & snapshot

technique, using staging table in middle-tier, integrated

RDBMS which use message and before-image technique.

The commercial synchronization solutions which use

these technologies were compared with SAMD on the

basis of mentioned algorithm objectives. TABLE

represents algorithm designing objectives and

maintaining or not as to objectives of each

technologies/SAMD.

5. CONCLUSION

This paper has suggested an SMAD synchronization

algorithm based on message digest for synchronizing

between server-side databases and mobile databases. The

SAMD algorithm is performed with only SQL functions of

relational databases, so that it is not dedicated to

particular venders and is available for use in combination

with any server-side databases and mobile databases.

Therefore, extensibility, adaptability and flexibility are

guaranteed when a mobile business system is authorized.

This feature is important in order to build efficient mobile

business systems because the upcoming mobile business

environment has heterogeneous characteristics in which

diverse mobile devices, mobile databases and RDBMS

exist.

REFERENCES

 [1] Sang-ouk Kim, Se-Bong Oh, Sung-Young Son, Jin-Ho Lee,

“The framework for synchronization in embedded

database environment.”, Journal of Computing Science

and Engineering, Vol.20, Num.7, pp. 14-21, 2002.Tomasz

Imielinski and B. R. Badrinath, "Mobile wireless

computing: challenges in data management",

Communications of the ACM, Volume Issue 10, pp. 18-28,

1994.

[2] Barbara, D., "Mobile Computing and Databases - A
Survey", IEEE Transactions on Knowledge and Data
Engineering, Vol. 11 No. 1, pp 108-117, 1999.

[3] EPFL, U. Grenoble, INRIA-Nancy, INT-Evry, U.
Montpellier, "Mobile Database: a Selection of Open
Issues and Research Direction", SIGMOD Record, Vol.33,
No.2, pp.78-83, June, 2004.

[4] My-Sun Choi, Young-Guk Kim, “Introduction of mobile
database and research status”, Journal of Database
Research, Vol.17, Num.3, pp. 3-16, 2001.

[5] Joshua Savill, “MobiLink Synchronization Profiles", A
Whitepaper from Sybase iAnywhere., October 17th, 2008

[6] Thomas Fanghänel, Jonas S Karlsson, Cliff Leung, " DB2

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 401

Everyplace Database Release 8.1: Architecture and Key
Features", Datenbank-Spektrum, pp. 1~15, 5/2003

[7] Gye-Jeong Kim, Seung-Cheon Baek, Hyun-Sook Lee,
Han-Deok Lee, Moon Jeung Joe, " LGeDBMS: a small
DBMS for embedded system with flash memory", 32nd
international conference on very large data bases, pp.
1255~1258, 2006

[8] john E. Canavan, "Fundamentals of Network Security",
ARTECH HOUSE, INC., 2001, 61~62

[9] Jonathan Knudsen, “WIRELESS JAVA : Developing with
Java 2, Micro Edition”, A press, 2001, pp. 155.

”MobiLink Synchronization User’s Guide”, Sybase, Inc.,

2004, pp. 37 ~ 68, pp. 392~402

BIOGRAPHIES

Assistant professor , department
of computer science and
engineering, Latha mathavan
Engineering college

Assistant professor , department
of Information Technology ,PSNA
college of Engineering and
Technology

 Author’s
Photo

or’s
Photo

