
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 108

EFFICIENT MULTIUSER ITINERARY PLANNING FOR TRAVELLING

SERVICES USING FKM-CLUSTERING ALGORITHM

R.Rajeswari1, J. Mannar Mannan2

1 III-M.tech(IT) , Department of Information technology, Regional Centre, Anna University, Coimbatore, India
 2 Teaching Assistant, Department of Information technology, Regional Centre, Anna University, Coimbatore, India

---***---

Abstract - This paper proposes, previous efforts
address the problem by providing an automatic
itinerary planning service that organizes the points-of-
interests (POIs) into a customized itinerary. The search
space of all possible itineraries is too costly to fully visit,
to simplify the complexity, most work assume that
user’s trip is limited to some important POIs and will
complete within one day. To address the above
Problem, design a more general automatic itinerary
planning service, this generates multiday itineraries for
the users. All POIs are considered and ranked based on
the user’s preference. Since the many users are
planning for a trip with various requirements then
their search complexity is increased. To overcome this
limitation using the concept of grouping or clustering
the users based on user’s requirement similarity. The
novel modified clustering is using for grouping the user
according to their requirement similarity. The
membership values are defined for clustering process
and it’s based on the users. It is used to reduce the
search complexity as well as time complexity of the
system.

Key Words: POI, Grouping Clustering, Itinerary

1. Introduction

 Transportation systems have played an
important role in real applications such as the traffic
control, location-based services (LBS), trip planning, and
geographical data management. One typical example of
such systems is the European Traffic Message Channel
(TMC), which has been operated in many European
countries, North America, and Australia. With the
increasing interest in the management of transportation
systems, recently, the spatial road network has received
much attention from the database community.

 Specifically, a spatial road network can be
modeled by a large graph in a 2-dimensional geographical
space whose edges correspond to road segments, and are
associated with weights related to the traffic information
(e.g., road-network distance, speed of vehicles, or the
delay time). Over such road networks, a wide spectrum of
practical problems have been extensively studied,
including range queries, k-nearest neighbor (kNN) queries,

reverse nearest neighbor queries, shortest path queries,
multi-source skyline queries and so on.

Traveling market is divided into two parts. For
casual customers, they will pick a package from local
travel agents. The package, in fact, represents a pre-
generated itinerary. The agency will help the customer
book the hotels, arrange the transportations, and preorder
the tickets of museums/parks. It prevents the customers
from constructing their personalized itineraries, which is
very time consuming and inefficient. For instance, a four-
day package to Hong Kong provided by a Singapore agency
is covers the most popular POIs for a first-time traveler.
Although the travel agencies provide efficient and
convenient services, for experienced travelers, the
itineraries provided by the travel agents lack
customization and cannot satisfy individual requirements.
Some interested POIs are missing in the itineraries and the
packages are too expensive for a backpack traveler.
Therefore, they have to plan their trips in every detail,
such as selecting the hotels, picking POIs for visiting, and
contacting the car rental service.

First, current planning algorithms only consider a
single day’s trip, while in real cases, most users will
schedule an n-day itinerary. Generating an n-day itinerary
is more complex than generating a single day one. It is not
equal to constructing single-day itineraries and combining
them together, as a POI can only appear once in the
itinerary. It is tricky to group POIs into different days. One
possible solution is to exploit the geo-locations, for
example, nearby POIs are put in the same day’s itinerary.
Alternatively, it can also rank POIs by their importance
and use a priority queue to schedule the trip.

Second, the travel agents tend to favor the
popular POIs. Even for a city with a large number of POIs,
the travel agents always provide the same set of trip plans,
composed with top POIs. However, those popular POIs
may not be attractive for the users, who have visited the
city for several times or have limited time budget. It is
impossible for a user to get his personal trip plan. The
travel agent’s service cannot cover the whole POI set,
leading to few choices for the users. In our algorithm, we
adopt a different approach by giving high priorities to the
selected POIs and generating a customized trip plan on the
fly.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 109

Third, suppose if have N available POIs and there
are m POIs in each single day’s itinerary averagely and
then end up with N! / (N-m)! m! Candidate itineraries. It is
costly to evaluate the benefit of every itinerary and select
the optimal one. Therefore, in [9] and [3], some heuristic
approaches are adopted to simplify the computation.
However, the heuristic approaches are based on some
assumptions (e.g., popular POIs are selected with a higher
probability).They only provides limited number of
itineraries and is not optimized for the backpack traveler,
who plans to have a unique journey with his own
customized itinerary. Last but not the least, handling new
emerging POIs was tricky in previous approaches. The
model needs to be rebuilt to evaluate the benefit of
including the new POIs into the itinerary. For systems
based on the users’ feedback [3], they need to collect the
comments for the new POIs from the users, which is very
time-consuming.

In the preprocessing, POIs are organized into an
undirected graph, G. The distance of two POIs is evaluated
by Google Map’s APIs. Different ranking functions are
applied to different types of POIs. The automatic itinerary
planning service needs to return an itinerary with the
highest ranking. Searching the optimal itinerary can be
transformed into the team orienteering problem (TOP),
which is an NP-complete problem without polynomial
approximations [4]. Therefore, a two stage scheme is
applied.

In the preprocessing stage, iterate all candidate
single-day itineraries using a parallel processing
framework, MapReduce [4]. The results are maintained in
the distributed file system (DFS) and an inverted index is
built for efficient itinerary retrieval. To construct a
multiday itinerary, I need to selectively combine the single
itineraries. The preprocessing stage, in fact, transforms the
TOP into a set-packing problem [6], which has well-known
approximated algorithms. In the online stage, design an
approximate algorithm to generate the optimal itineraries.

2. Related Research

2.1. Automatic Construction of Travel Itineraries[3]

 To construct itineraries following a two-step
approach. Given a city, here first extract photo streams of
individual users. Each photo stream provides estimates on
where the user was, how long he stayed at each place, and
what was the transit time between places. In the second
step, here aggregate all user photo streams into a POI
graph. Itineraries are then automatically constructed from
the graph based on the popularity of the POIs and subject
to the user’s time and destination constraints.

(1) Introduce a novel end-to-end approach that starts with
the analysis of latent information.

(2) Apply a pipeline of multiple heuristics that together
extract reliable granular evidence of individual tourists’
trips to a destination from Flickr photos.
(3) Aggregate the individual trips to form a graph
representing collective touristic behavior, and adapt a
solution of the Orienteering problem to efficiently.

2.2 Greedy Local Improvement and Weighted Set
Packing Approximation[6]

Here present an approximation algorithm for the
weighted k-set packing problem that combines the two
paradigms by starting with an initial greedy solution and
then repeatedly choosing the best possible local
improvement. The algorithm has a performance ratio of
2(k + 1)/3, which here show is asymptotically tight. Here
present a natural heuristic BestImp that combines the
greedy and local search paradigms by starting with an
initial greedy solution and then repeatedly choosing the
best possible local improvement. Its performance ratio is
at most 2(k + 1)/3, which is asymptotically tight. AnyImp
that also combines the greedy and local search paradigms.
The difference is that AnyImp just looks for an
improvement that leads to a gain bigger than a specified
threshold, instead of looking for the best improvement.

The proof technique here use to obtain upper
bounds on the performance ratio can be understood in a
simpler setting with AnyImp. The performance ratio of
AnyImp as a function of the threshold, which for the best
choice of a threshold is at most (4k + 2)/5. The results
hold equally for the slightly more general problem of
approximating maximum weight independent sets in k +
1-claw free graphs.

2.3 Interactive Itinerary Planning[8]

Adopt an interactive process where the user
provides feedback on POIs suggested by our itinerary
planning system and the system leverages those feedbacks
to suggest the next batch of POIs, as well as to recommend
the best itineraries so far. The process repeats until the
user is satisfied. In other words, instead of asking the user
to examine all the POIs before deciding on the itinerary,
our goal is to ask the user to examine only a subset of
those POIs in multiple steps, each with a small number of
increasingly relevant POIs, thereby reducing the overall
efforts required on the user to construct the itinerary.

(1) It starts with a user providing a time budget and a
starting point of the itinerary.
(2) At each step, the system presents the user with a small
fixed number of POIs that are most probably liked by the
user, based on feedback provided by the user so far.
(3) The system also recommends highly ranked itineraries
to the user based on the feedback;

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 110

(4) The user provides feedback on suggested POIs to
indicate process continues.
(5) The user can also choose to pick one of the
recommended itineraries, at point, the process stops.

2.4 Using Flickr Geotags to Predict User Travel
Behavior[4]

Here using a method to predict a user’s favorite’s
locations in a city, based on his Flickr geotags in other
cities. Here define a similarity between the geotag
distributions of two users based on a Gaussian kernel
convolution. The geotags of the most similar users are
then combined to rerank the popular locations in the
target city personalized for this user. Here show that this
method can give personalized travel recommendations for
users with a clear preference for a specific type of
landmark.

Here use to predict a user’s favorites locations in a
city based on his travel behavior in previously visited
cities. On social photo sharing websites like
www.flickr.com people can annotate their photos,
including the geographical location where the photo was
made. Also, increasingly more cameras and smart phones
are automatically storing the GPS coordinates when a
photo is made. These geo tags give an accurate indication
of the user’s preferred landmarks. Based on a set of
collected geotags, define a measure to identify similar
users in previously visited cities. Then we aggregate these
user opinions in a different city to obtain a personalized
travel recommendation for the target user.

2.5 Metaheuristics for the Team Orienteering
Problems [1]

Investigate the VRP with profit which is the
extension to the case of multiple tours of the most studied
TSP with profits, namely the OP. In the OP, given a set of
potential customers with associated profit and given the
distances between pairs of customers, the objective is to
find the subset of customers for which the collected profit
is maximum, given a constraint on the total length of the
tour. The OP is also called the Selective Traveling
Salesman Problem (STSP). The name orienteering comes
from an outdoor sport usually played on mountains or
forest areas. Given a specified set of points, each
competitor, with the help of a map and a compass, has to
visit as many points as possible within a specified time
limit.

The competitor starts at a given point and has to
return to the same point. The extension of the
Orienteering Problem to the case of multiple tours is
known as the Team Orienteering Problem (TOP). Among
the metaheuristics proposed for the solution of
combinatorial optimization problems, tabu search has

been shown to be very effective for vehicle routing
problems. Another interesting metaheuristic is the
variable neighborhood search.

3. Architecture

3.1 System Architecture

Fig -1 System Overview

Initially, the place of interests that user wants to
visit will be gathered. After gathering the location
information from the users, in the proposed work, k-
means clustering will be applied to group the nearest
locations together. Then map-reduce process will be
applied on the data’s in order to make them process in the
efficient manner. The location will be selected in order
based on the indexes assigned. Then greedy
approximation algorithm to create the k-day itinerary
plan. After creating the plan, the hotel selection will be
done in order to effectively handle the user selection.

3.2 Hadoop File System Architecture

Hadoop consists of the Hadoop Common package,
which provides files system and OS level abstractions, a
MapReduce engine and the Hadoop Distributed File
System (HDFS). The Hadoop Common package contains
the necessary Java Archive (JAR) files and scripts needed
to start Hadoop. The package also provides source code,
documentation and a contribution section that includes
projects from the Hadoop Community.

Fig- 2 Hadoop System Overview

HDFS uses this method when replicating data to
try to keep different copies of the data on different racks.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 111

The goal is to reduce the impact of a rack power outage or
switch failure, so that even if these events occur, the data
may still be readable. A small Hadoop cluster includes a
single master and multiple worker nodes. The master
node consists of a Job Tracker, Task Tracker, Name Node
and Data Node. A slave or worker node acts as both a Data
Node and Task Tracker, though it is possible to have data-
only worker nodes and compute-only worker nodes.
These are normally used only in nonstandard applications.
Hadoop requires Java Runtime Environment (JRE) 1.6 or
higher. The standard start-up and shutdown scrip ts
require Secure Shell(ssh) to be set up between nodes in
the cluster.

4. Implementation and Results

4.1 Clustering

Clustering is the process of grouping data objects
into a set of disjoint classes, called clusters, so that objects
within a class have high similarity to each other, while
objects in separate classes are more dissimilar. Clustering
is the assignment of objects into groups (called clusters).
Clustering is a common technique for statistical data
analysis, which is used in many fields, including machine
learning ,data mining, pattern recognition, image analysis,
and bioinformatics.

Partitional Clustering

It attempts to directly decompose the data set into

a set of disjoint clusters. The criterion function that the
clustering algorithm tries to minimize may emphasize the
local structure of the data, as by assigning clusters to
peaks in the probability density function, or the global
structure. Typically the global criteria involve minimizing
some measure of dissimilarity in the samples within each
cluster, while maximizing the dissimilarity of different
clusters.

K-means Clustering Algorithm is a simple and fast

clustering method, which has been popular used. So we
apply it to group the items with some adjustments. The
difference is, apply the fuzzy set theory to represent the
affiliation between an object and a cluster. Firstly, users
are grouped into a given number of clusters. After
completion of grouping, the possibility of one object (here
one object means one item) belonging to a certain cluster
is calculated as follows.

Pro(j, k) = 1 −

where ,
Pro(j, k) means the possibility of object j

belonging to the cluster k; The CS(j, k) means the counter-
similarity between the object j and the cluster k, which is
calculated based on the Cosine method; MaxCS(i, k) means

the maximum counter-similarity between an object and
cluster k.

4.2. Algorithm

Algorithm 1 : Fuzzy K-means Clustering

Input: the number of clusters k and user’s requirements
attribute features.

 (1) Initialize the parameters, and membership between
objects and clusters;
(2) Repeat (a) and (b) until global cost function has small
change;

a) Recompute the mean value of each cluster.
b) Recompute the membership of each object.

(3) Return the membership.

In our fuzzy k-means(FKM) algorithm, the fuzzy
membership in a cluster is only assigned at the last step. It
seems to un essentially represent the fuzzy memberships
of objects. So the FKM algorithm is also applied to group
the requirements, in which each object is assigned a fuzzy
membership during each iteration. The global cost
function, membership between an object and a cluster,
and the mean value of one cluster

4.3 Module Description

Single-Day Itinerary

The preprocessing includes two steps. In the first
step, a set of MapReduce jobs are submitted to produce all
possible single-day itineraries. The basic idea of
transformation is to iterate all possible single-day
itineraries. In the first job, we generate |P| initial
itineraries for the POI set P. Each initial itinerary only
consists of one POI. MapReduce job tries to add one more
POI to the itineraries. If no more single-day itineraries can
be generated, the process terminates. In current
implementation, we allow maximally m MapReduce jobs in
the transformation process to reduce the overheads.

Itinerary Index

To efficiently locate the single-day itineraries, an
inverted index is built. The key is the POI and the values
are all itineraries involving the POI. By scanning the index,
we can retrieve all the itineraries. we create an index file
for each POI in the DFS. The file includes all single
itineraries involving the POI, which are sorted based on
their weights. In this way, split the itineraries of a POI into
n groups and each group can be efficiently sorted in the
memory. However, it is not necessary to merge the files, as
the files are partitioned based on the weights.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 112

Algorithm 2: Mapping Function

map(Object key, Text value, Context context).

//value: single-day itinerary
1: Itinerary it = parse(value)
2: for i = 0 to it.POISize() do
3: intnextPOI = it.getNext(i)
4: Key key=new CompKey(nextPOI, it.weight/ bucketSize)
5: context.collect(key, it)

Algorithm 3 : Reducing Function

reduce(Key key, Iterablevalues,Context context).

1: CompositeKeyck = key, Set s = ;

2: for Itinerary it: values do
3: s.add(it)
4: sort(s)
5: DFSFile f = new DFSFile(ck:first + “-”+ck:second)
6: f.write(s)

Algorithms 2 and 3 show the process. The

mappers load the single-day itinerary and generate key-
value pairs for each involved POI. The reducers collect all
itineraries for a specific POI and sort them based on the
weights before creating the index file. In our system, the
size of the index file may vary a lot. Some POI may have an
extremely large index file, due to its popularity and short
visit time. In reducers, those POIs may result in the
exception of memory overflow in the sorting process. To
address this problem, in the map phase, instead of using
the POI as the key, we generate the composite key by
combining the POI and the itinerary weight.

Greedy-Based Approximation Algorithm

 After the itinerary indexes are constructed, the user
request (Sp; k) can be processed by selecting k best
itineraries from the indexes. Namely, the problem of
generating optimal k-day itinerary is transformed into a
weighted set-packing problem. In these module having
two phases. There are,

 Initialization phase
 Adjustment phase

Hotel Selection

 In fact, hotels can be considered as a special type of
POIs. It must appear as the last POI in the itinerary. We
need to calculate the traveling time from other POIs to the
hotel POIs. Hotel POIs do not incur access cost and their
weights are set as users rankings for the hotels. Based on
the user’s preference, they have two processing strategies.

 Multiple Hotels
 sSingle Hotel

5. Conclusion

Present an automatic itinerary generation service
for the backpack traveler. The service creates a
customized multiday itinerary based on the multiple
user’s preference. To search for the optimal solution, a
two-stage scheme is adopted. In the preprocessing stage,
iterate and index the candidate single-day itineraries using
mapreduce framework. After the preprocessing stage, the
TOP is transformed into the weighted set-packing
problem, which has efficient approximate algorithms. In
the next stage, simulate the approximate algorithm for the
set-packing problem. The algorithm follows the
initialization- adjustment model and can generate a result.

6. References

1. Archetti C., Hertz A. and Speranza M.G., (2007),

‘Metaheuristics for the Team Orienteering Problem’, J.
Heuristics, Vol. 13, pp. 49-76.

2. Chao I.M., Golden B.L. and Wasil E.A., (1996), ‘The

Team Orienteering Problem’, European J. Operational
Research, Vol. 88, no. 3, pp. 464-474.

3. Choudhury M.D., Feldman M., Amer-Yahia S.,

Golbandi N., Lempel R. and Yu C., (2010), ‘Automatic
Construction of Travel Itineraries Using Social
Breadcrumbs’, Proc. 21st ACM Conf. Hypertext and
Hypermedia (HT), pp. 35-44.

4. Clements M., Serdyukov P., de Vries A.P. and

Reinders M.J., (2010), ‘Using Flickr Geotags to Predict
User Travel Behaviour’, Proc.33rd Int’l ACM SIGIR
Conf. Research and Development in Information
Retrieval (SIGIR).

5. Dean J. and Ghemawat S., (2010), ‘MapReduce: A

Flexible Data Processing Tool’, Comm. ACM, Vol. 53,
pp. 72-77.

6. Halldo´rsson M.M. and Chandra B., (2001), ‘Greedy

Local Improvement and Weighted Set Packing
Approximation’, J. Algorithms, Vol. 39, pp. 223-240.

7. Laporte G., (1992), ‘The Travelling Salesman

Problem: An Overview of Exact and Approximate
Algorithms’, European J. Operational Research, Vol.
59, no. 2, pp. 231-247.

8. Roy S.B., Das G., Amer-Yahia S. and Yu C., (2011),

‘Interactive Itinerary Planning’, Proc. IEEE 27th Int’l
Conf. Data Eng. (ICDE), pp. 15-26.

