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Abstract — In this article, the effect of first order 

chemical reaction on free convective flow of immiscible 

permeable fluids in a vertical channel is studied. The flow 

in the porous medium is modeled using Brinkman 

equation. The channel walls are maintained at two 

different constant temperatures. Viscous and Darcy 

dissipation terms are included in the energy equation. 

The coupled ordinary nonlinear differential equations 

governing the heat and mass transfer are solved 

analytically by using perturbation method and 

numerically by using finite difference method. Separate 

solutions for the porous medium in both the regions are 

obtained and these solutions are matched at the interface 

using suitable matching conditions. The solutions are 

evaluated numerically and the results are presented 

graphically for various values of flow governing 

parameters such as thermal Grashof number, mass 

Grashof number, porous parameter, viscosity ratio, width 

ratio and conductivity ratio. In addition, closed form 

expressions for volumetric flow rate, Nusselt number, 

species concentration and total energy added to the flow 

are also derived. It is also found that both analytical and 

numerical solutions agree very well for small values of 

perturbation parameter. 
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1. INTRODUCTION 
Convection in porous media is applied in utilization of 
geothermal energy, the control of pollutant spread in 
groundwater, the design of nuclear reactors, compact heat 
exchangers, solar power collectors, heat transfer associated 

with the deep storage of nuclear waste and high 
performance insulators for buildings. Considerable progress 
in this area was made by Nield and Bejan [1], Kaviany [2] 
and Vafai and Tien [3] also analyzed the effects of a solid 
boundary and the inertial forces on flow and heat transfer in 
porous media. The coupled fluid flow and heat transfer 
problem in a fully developed composite region of two 
parallel plates filled with Brinkman-Darcy porous medium 
was analytically investigated by Kaviany [4].  Rudraiah and 
Nagraj [5] studied the fully developed free-convection flow 
of a viscous fluid through a porous medium bounded by two 
heated vertical plates. Beckerman [6] studied natural 
convection in vertical enclosure containing simultaneously 
fluid and porous layers. Singh et al. [7] analyzed heat and 
mass transfer phenomena due to natural convection in a 
composite cavity containing a fluid layer overlying a porous 
layer saturated with the same fluid, in which the flow in the 
porous region was modeled using Brinkman-Forchheimer 
extended Darcy model that includes both the effect of 
macroscopic shear (Brinkman effect) and flow inertia 
(Forchheimer effect). 
 
Forced convection in composite channel is a subject of 
intensive investigation. This is due to the rapid development 
of technology and numerous modern thermal applications 
relevant to this area such as cooling of microelectronic 
devices. Poulikakos and Kazmierczak [8] presented 
analytical solutions for forced convection flow in ducts 
where the central part is occupied by clear fluid and the 
peripheral part is occupied by a Brinkman-Darcy fluid-
saturated porous medium. The results of Poulikakos and and 
Kazmierczak [8] were extended by Kuznetsov [9] to account 
for the Forchheimer (quadratic drag) effects. Prasad [10] 
have made an excellent review for composite systems. 
Alzami and Vafai [11] reviewed different types of interface 
conditions between a porous medium and fluid layer.  
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Some novel designs of heat sinks for cooling microelectronic 
devices utilize highly porous materials such as aluminum 
foam (Paek et al. [12]). Nield and Kuznetsov [13] considered 
a forced convection problem in a channel whose center is 
occupied by a layer of isotropic porous medium (porous 
layer 1) and whose peripheral part is occupied by another 
layer of isotropic porous medium (porous layer 2), each of 
the layers with its own permeability and thermal 
conductivity. They utilized the Darcy law for the flow in 
porous layers. Malashetty et al. [14-16] studied two-fluid 
flow and heat transfer in an inclined channel containing a 
porous-fluid layer and composite porous medium. Recently, 
Umavathi et al. [17-23], Umavathi and Manjula [24], 
Umavathi [25] and Prathap Kumar et al. [26, 27] studied 
mixed convection in a vertical porous channel. 
 
Combined heat and mass transfer problems with a chemical 
reaction are of importance in many processes and have 
received a considerable amount of attention in recent years. 
Such as drying, evaporation at the surface of a water body, 
energy transfer in a wet cooling tower and the flow in a 
desert cooler, heat and mass transfer occurs simultaneously. 
Natural convection processes involving the combined 
mechanisms are also encountered in many natural 
processes, such as evaporation, condensation and 
agriculture drying and in many industrial applications, such 
as the curing of plastics, cleaning and chemical processing of 
materials relevant to the manufacture of the printed 
circuitry and the manufacture of pulp-insulated cables. In 
many chemical engineering processes, chemical reactions 
take place between a foreign mass and a working fluid mass 
which moves due to the stretch of a surface. The order of the 
chemical reactions depends on several factors. One of the 
simplest chemical reactions is the first order reaction in 
which the rate of the reaction is directly proportional to the 
species concentration. Chamkha [28] studied the analytical 
solutions for heat and mass transfer by the laminar flow of a 
Newtonian, viscous, electrically conducting and heat 
generating /absorbing fluid on a continuously moving 
vertical permeable surface in the presence of a magnetic 
field and the first order chemical reaction. 
Muthucumaraswamy and Ganeshan [29] studied the 
numerical solution for the transient natural convection flow 
of an incompressible viscous fluid past an impulsively 
started semi-infinite isothermal vertical plate with the mass 
diffusion, taking into account a homogeneous chemical 
reaction of the first order. The analytical solution of the free 
convection heat and mass transfer from a vertical plate 
embedded in a fluid-saturated porous medium with the 
constant wall temperature and concentration was obtained 
by Singh and Queeny [30]. The heat and mass transfer 
characteristics of the natural convection about a vertical 
surface embedded in a saturated  porous medium subjected 

to a chemical reaction taking into account the Soret and 
Dufour effects was analyzed by Postelnicu [31]. Prathap 
Kumar et al. [32-34] studied the effect of homogenous and 
heterogeneous reaction on the dispersion of a solute for an 
immiscible fluid. Keeping in view the wide area of practical 
applications on multi fluid flow and effects of chemical 
reaction as mentioned, the objective of this study is to 
investigate the heat and mass transfer of two immiscible 
permeable fluids between vertical parallel plates. 
  
 

2. MATHEMATICAL FORMULATION OF THE 
PROBLEM 
 

The geometry under consideration illustrated in figure 1, 
consists of two infinite parallel plates maintained at equal or 
constant temperature, taking X  axis along the midsection 
of channel and Y axis perpendicular to walls. The region-I 

1(0 )Y h   is filled with a homogeneous isotropic porous 

material having permeability
1 , density

1 , viscosity
1 , 

thermal conductivity
1K , thermal expansion coefficient

1T , 

concentration expansion coefficient
1C  and diffusion 

coefficient
1D . The region-II 

2( 0)h Y   is filled with 

another homogeneous isotropic porous material having 
permeability

2 . This region is saturated with different 

viscous fluid of density
2 , viscosity

2 , thermal 

conductivity
2K , thermal expansion coefficient

2T , 

concentration expansion coefficient 2C  and diffusion 

coefficient
2D . The fluids are assumed to have constant 

property except the density in the buoyancy term in the 
momentum equation. A fluid rises in the channel driven by 
buoyancy force. The temperature properties of both the 
fluids are assumed to be constant. We consider the fluids to 
be incompressible; flow is steady, laminar and fully 
developed.  It is assumed that the fluid viscosity and 
Brinkman viscosity (i. e effective viscosity) are same. The 
flow in both the regions is assumed to be driven by a 

common constant pressure gradient  dp dX and 

temperature gradient  1 2w wT T T   .  It is also assumed 

that at any given instant, the temperature of the fluid and 
the temperature of solid are same. The temperature and 
concentration of boundary at 1Y h  is 1wT  and 1wC , while at 

2Y h   is 2wT and 2wC  respectively. 

 
Under these assumptions, the governing equations of 
motion, energy and concentration for incompressible fluids   
yields 
Region I: 
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The boundary conditions on velocity are no-slip conditions 
and the two boundaries are held at constant different 
temperatures. In addition, continuity of velocity, shear 
stress, temperature, heat flux, concentration and mass flux 
at the interface are assumed. 

 

1 1( ) 0U h  ,  2 2( ) 0U h  , 1 2(0) (0),U U
 

1 2

1 2(0) (0),
dU dU

dY dY
  1 1 1( )T h Tw , 2 2 2( )T h Tw 

1 2(0) (0)T T ,     1 2
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dT dT

dY dY
                                           

 
 

1 1 1( )C h C , 
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D D
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                                                                    (7)  

 
The non-dimensional parameters are 
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The governing equations (1) to (6) can be written in a 
dimensionless form by employing the dimensionless 
quantities (8)  
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The boundary and interface conditions in non-dimensional 
form become  

1(1) 0u  , 
2 ( 1) 0u   , 

1 2(0) (0)u u , 1 21
(0) (0)

du du

dy mh dy
                                                        
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d d
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                                         
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d dd

dy h dy

 
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3. METHOD OF SOLUTIONS 
3.1 Perturbation Method 
 
Equations (9) to (14) are coupled and highly non-linear 
equations because of viscous and Darcy dissipation terms, 
hence exact solutions cannot be found. The approximate 
analytical solutions can be found using regular perturbation 
method. The Brinkman number can be exploited as the 
perturbation parameter. Therefore the solutions are 
assumed in the form  

2

0 1 2( ) ( ) ( ) ( ) ...i i i iu y u y Bru y Br u y                                    (16) 
2

0 1 2( ) ( ) ( ) ( ) ...i i i iy y Br y Br y                                       (17) 

Using equations (16) and (17) in equations (9), (10), (12) 
and (13) and equating the coefficients of like powers of Br  
to zero and one we determine  zeroth and first order 
equations as follows 
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The corresponding boundary and interface conditions as 
given in equation (15) can be written as, 
Zeroth order boundary and interface conditions 
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First order boundary and interface conditions 
 

11(1) 0u  ,   21( 1) 0u   ,   
11 21(0) (0)u u ,   

11 211
(0) (0)
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The solutions for equations (11) and (14) are obtained 
directly 
 
 

1 1 1 2 1( ) ( )B Cosh y B Sinh y                                                    (28) 

2 3 2 4 2( ) ( )B Cosh y B Sinh y                                                   (29) 

 
The solutions of zeroth and first order equations (18) to 
(25) are obtained by using boundary and interface 
conditions as defined in equations (26) and (27) 
respectively and are given by   
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  





   

  



(37) 

 

 Heat Transfer 
 
The wall heat transfer expression in terms of the Nusselt 
number becomes   

  11
d

Nu h
dy


            at        1y   

 

21
_ 1

d
Nu

h dy

 
  
 

       at       1y        
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 

  
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5 1 1 1 6 1 1 7 1
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     

     

    

    

       

  

  

  

  

  



1
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)
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( ) ( ) ( ) ( )
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   

   

  
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(38)  
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 
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     

    

    

      
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)
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F Sinh F Sinh

F Cosh F Cosh

   

       

       

  

     

     

      (39)                

 
The constants appeared in the solutions are not presented 
as they can be obtained while finding the solutions. 
 
The dimensionless total volume flow rate is given by  

1 2Qv Qv Qv                                                                               (40) 

  
where  

1 0

1 1 2 2
0 1

,Qv u dy Qv u dy


    

 
The dimensionless total heat rate added to the fluid is given 
by 

1 2E E E                                                                                         (41) 

 
where  

1 0

1 1 1 2 2 2
0 1

,E u dy E u dy 


    

 
The dimensionless total species rate added to the fluid is 
given by 

1 2Cs Cs Cs                                                                                  (42) 

where 
1 0

1 1 1 2 2 2
0 1

,Cs u dy Cs u dy 


    
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Equations (29) to (42) are evaluated for different values of 
the governing parameters and the results are presented 
graphically.  
 

3.2 Finite Difference Method 
 
The approximate analytical solutions obtained in the 
subsection are valid for values of Brinkman number less 
then one. However in many practical problems especially 
when viscous dissipation dominates, the Brinkman number 
takes the values greater than one. In such situations it is 
required to find the approximate solutions numerically. The 
governing equations (1) to (6) with the boundary and 
interface conditions (15) are solved using FDM. In numerical 
iterations, computation domain is divided into a uniform 
grid system. The second derivative and the squared – first 
derivatives terms are discritized with central difference of 
second order accuracy. By replacing the derivatives with the 
corresponding finite difference approximation, we obtain a 
set of n algebraic equations, where n  is the number of 

divisions from -1 to 1.To validate the present numerical 
method, computed solutions are compared with analytical 
solutions. The numerical and analytical solutions agree very 
well in the absence of Brinkman number and as the 
Brinkman number increases, error between FDM and PM 
also increases. The solutions obtained by FDM and PM are 
depicted in Table1 and percentage error between FDM and 
PM is also evaluated. 
 

4. RESULTS AND DISCUSSION 
 

The problem concerned is with the heat and mass transfer in 
a vertical channel for composite porous medium in the 
presence of homogeneous first order chemical reaction. The 
flow is modeled with Darcy-Lapwood-Brinkman equation. 
The viscous and Darcy dissipation terms are included in the 
energy equation. The continuity of velocity, temperature, 
shear stress, heat flux, concentration and mass flux at the 
interface is assumed. The equations governing the flow 
which are highly nonlinear and coupled are solved 
analytically using perturbation method (PM) and 
numerically using finite difference method (FDM).The 
perturbation solutions are valid for small values of 
Brinkman number and numerical solutions are valid for all 
values of Brinkman number.  
 
The effect of thermal Grashof number TGR   on the velocity 

and temperature fields is shown in figures 2a and 2b 
respectively, in the presence ( 1)  and in the absence 

( 0)  of first order chemical reaction. As TGR  increases 

the flow increases in both the regions. Physically an increase 

in the value of Grashof number means an increase of the 
buoyancy force which supports the motion. Further figures 
2a and 2b also reveal that the magnitude of velocity and 
temperature is large in the absence of chemical reaction 
when compared with values in the presence of the chemical 
reaction. 
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Fig-2a: Velocity profiles for different values of thermal 

Grashof number TGR . 
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Fig-2b: Tempareture profiles for different values of thermal 

Grashof number TGR . 

The effect of mass Grashof number CGR  on the velocity and 

temperature fields shows the similar effect as that of 
thermal Grashof number, as shown in figures 3a and 3b 
respectively. That is to say that as CGR  increases, flow 

increases in both the regions. The mass Grashof number is 
the ratio of species buoyancy force to the viscous force. As 
expected, the fluid velocity and temperature increases due 
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to the increase in the species buoyancy force. The effects of 

TGR  and 
CGR  on the flow were the similar results observed 

by Shivaiah and Anand Rao [35] for the flow past a vertical 
porous plate and Malashetty et al. [14-16] in the absence of 
chemical reaction. 
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=0
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Fig-3a: Velocity profiles for different values of mass Grashof 
number

CGR .  

 
The variation of velocity and temperature for different 
values of porous parameter  1 2( )   is shown in figures 

4a and 4b respectively.  
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Fig-3b: Temperature profiles for different values of mass 
Grashof number

CGR . 

 
As the porous parameter increases the velocity, temperature 
decreases in both the regions. For large values of   the 

frictional drag resistance against the flow motion is 

pronounced and as a result velocity is reduced in both the 
regions. 

The effect of viscosity ratio m 1 2( )   is to increase the 

velocity and temperature fields in both the regions as shown 
in figures 5a and 5b respectively. The viscosity ratio m  is 

defined as the viscosity of the fluid in region-I to the 
viscosity of the fluid in region-II. It is observed from figure 
5b that the effect of viscosity ratio on the temperature field 
is not very significant. 
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Fig-4a: Velocity profiles for different values of porous 
parameter . 
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Fig-4b: Temperature profiles for different values of porous 
parameter . 

The effect of width ratio h 2 1( )h h  is to enhance velocity and 

temperature field in both the regions as displayed in figures 

6a and 6b respectively. The width ratio h is defined as the 

ratio of width of the fluid layer in region-II to the width of 

the fluid in region-I. It is well known that as h increases, 

velocity increases which intern enhances the dissipation and 
hence results in enhancement of temperature field also. 
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Fig-5a: Velocity profiles for different values of viscosity 
ratio m . 
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Fig-5b: Temperature profiles for different values of viscosity 
ratio m . 

 

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

p = 0.5
Region-IRegion-II

2

1

h=0.5

1.5

y

u

Fig-6a: Velocity profiles for different values of width ratio h . 

 

The effect of conductivity ratio k 1 2( )K K on the flow is 

similar to the effects on viscosity ratio and width ratio, as 
seen in figures 7a and 7b. The conductivity of the permeable 
fluid layer in region-I is large compared to the conductivity 
of fluid layer in region-II, larger the amount of heat transfer 
and hence velocity also increases. 
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Fig-6b: Temperature profiles for different values of width 

ratio h . 
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Fig-7a: Velocity profiles for different values of thermal 

conductivity ratio k . 
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Fig-7b: Temperature profiles for different values of thermal 

conductivity ratio k . 
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The effects of h  and k in the presence of first order chemical 

reaction was the similar results observed by Malashetty [14] 
in the absence of first order chemical reaction. 
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Fig-8a: Velocity profiles for different values chemical 
reaction parameter . 
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Fig-8b: Temperature profiles for different values chemical 
reaction parameter . 
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Fig-8c: Concentration profiles for different values chemical 
reaction parameter . 

 
The effect of first order chemical reaction parameter  on 

velocity, temperature and concentration fields is depicted in 
figures 8a, 8b and 8c respectively. It is evident from these 
figures that as   increases the velocity, temperature and 

concentration are reduced in both the regions. Physically an 
increase in the values of  increases in number of solute 

molecules that undergoing chemical reaction resulting in 
decrease in the fluid flow.  
 
This was the similar results observed by Damesh and 
Shannak [36] for viscoelastic fluid and Krishnendu 
Bhattacharyya [37] for viscous fluid. 
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Fig-9: Effect of mass Grashof number, viscosity ratio, width 
ratio and conductivity ratio on the volume flow rate.  
 
Further, one can also come to the conclusion from figures 9, 

10 and 11 that, as ,m h  and k  increases the total volumetric 

flow rate, species concentration and heat rate also increases. 
The values of total volumetric flow rate, species 
concentration and heat rate remains the same 
when 1m h k   . 
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Fig-10: Effect of mass Grashof number, viscosity ratio, width 
ratio and conductivity ratio on total species rate added to 
the fluid. 
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Fig-11: Effect of mass Grashof number, viscosity ratio, width 
ratio and conductivity ratio on total heat rate added to the 
fluid. 
 
This is the valid result because considering all the ratios to 
be equal to one implies the channel is filled with same 
porous fluids in both the regions. However, variation of 

,m h  and k for values not equal to one shows the different 

profiles for total volumetric flow rate, species concentration 
and heat rate. In all the three graphs, the magnitude of 
volumetric flow rate, species concentration and heat rate is 

large for k , when compared with m and h . The magnitude of 

volumetric flow rate, species concentration and heat rate is 

optimal for m when compared with h . 

 
The Nusselt number at the cold ( )Nu  and hot walls ( )Nu  is 

shown in figure 12 for variations of mass Grashof 

number CGR . It is seen that as CGR increases Nu  and Nu  

increases in magnitude.  
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Fig-12: Effect of mass Grashof number on the Nusselt 
number. 
 
The effect of Brinkman number on the velocity and 
temperature field is shown in table 1. It is seen that, as the 
Brinkman number increases the velocity and temperature 
increase in both the regions. An increase in Brinkman 
number results in increase of dissipation effects which 
result in an increase of temperature and as a consequence 
velocity increase for the increase in buoyancy force in the 
momentum equation. This table also shows a comparison of 
numerical and analytical solutions. It is seen that analytical 

and numerical solutions are exact to the order of 410 in the 

absence of Brinkman number and the difference increases as 
the Brinkman number increases. Further the percentage of 
error is also calculated and shown in table1. 

 

5. CONCLUSIONS 
 
The problem of heat and mass transfer in a vertical channel 
filled with porous immiscible fluids was analyzed 
analytically by using regular perturbation method and 
numerically by finite difference method. The following 
conclusions are drawn 
 

1. The effect of thermal Grashof number and mass 
Grashof number was to enhance the velocity and 
temperature fields.  

2. The effect of porous parameter   is to suppress the 

flow in both regions.  
3. The larger the values of viscosity ratio, width ratio, 

conductivity ratio, the larger the flow field. 
4. The flow field was found to be less in the presence 

of first order chemical reaction parameter when 
compared in the absence of chemical reaction 
parameter. Further as the chemical reaction rate 
parameter increases heat and mass transfer 
decreases. 

5. The volumetric flow rate, species concentration and 
heat rate added to the flow was to increase for 
increasing values of mass Grashof number, viscosity 
ratio, width ratio and conductivity ratio. 

6. Nusselt number at the hot and cold wall increases in 
magnitude for increasing values of mass Grashof 
number. 

7. The percentage of error between analytical and 
numerical solutions increases as the Brinkman 
number increases. 
 

 
Table-1: Velocity and temperature values for different values of Brinkman number with 1 2=1, = = 4CGR   ,  = -1, =1Tp GR . 
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Velocity 

 0Br   0.5Br   1.5Br   
y  FDT PM %Error FDT PM %Error FDT PM %Error 

-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

-0.6 0.0696 0.0696 0.0000 0.071 0.0710 0.0020 0.0743 0.0737 0.0610 
-0.2 0.0997 0.0997 0.0000 0.1021 0.1020 0.0110 0.1075 0.1066 0.0940 
0 0.1107 0.1107 0.0000 0.1133 0.1132 0.0120 0.1192 0.1181 0.1060 
0.2 0.1194 0.1194 0.0000 0.122 0.1219 0.0130 0.1278 0.1268 0.1030 
0.6 0.1174 0.1174 0.0000 0.1191 0.1190 0.0090 0.1229 0.1223 0.0620 
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Temperature 

-1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
-0.6 0.2000 0.2000 0.0000 0.2254 0.2243 0.1060 0.2835 0.2730 1.0490 
-0.2 0.4000 0.4000 0.0000 0.4432 0.4414 0.1790 0.5419 0.5242 1.7670 
0 0.5000 0.5000 0.0000 0.5473 0.5454 0.1860 0.6554 0.6363 1.9070 
0.2 0.6000 0.6000 0.0000 0.6474 0.6455 0.1890 0.7552 0.7365 1.8660 
0.6 0.8000 0.8000 0.0000 0.8329 0.8317 0.1210 0.9072 0.8951 1.2120 
1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 
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