
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 61

Optimized Design and Implementation of a 16-bit Iterative Logarithmic

Multiplier

Laxmi Kosta 1, Jaspreet Hora 2, Rupa Tomaskar 3

1 Lecturer, Department of Electronic & Telecommunication Engineering, RGCER, Nagpur,India,
2 Lecturer, Department of Electronic & Telecommunication Engineering, RGCER, Nagpur,India,
3 Lecturer, Department of Electronic & Telecommunication Engineering, WCEM, Nagpur,India,

---***---

Abstract - In many real-time DSP applications,

performance is a prime target. However, achieving high

performance may be done at the expense of area and

power dissipation. Attempts have been made to use

alternative number systems to optimize the realization

of arithmetic blocks, so as to maintain high

performance without increasing area and power. For

this we used Logarithmic Number System in base two.

By using this number system, we can achieve highly

optimized realizations of functions such as

multiplication, division and square root. Complex

multiplication is one of the critical operations in

various wireless and DSP applications. Complex

multiplication requires a large area for

implementation and consumes high power as the input

width increases from 16 to 32 bits. Using the

Logarithmic Number System can transform this

operation into few additions and subtractions. The

corresponding savings can even compensate for the

additional costs of number system conversions at the

input and output. In this paper we have design an

optimized logarithmic multiplier based on Mitchell’s

Algorithm [1]. The design uses an iterative method to

implement the logarithmic multiplier so as to increase

the speed of multiplication, and reduce the number of

logic blocks used to design it. For the design entry, we

used the Xilinx ISE 13.2 - Web-PACK and designed with

Verilog HDL. The design was synthesized with the Xilinx

XST Release 13.2 for Windows. When using Xilinx

xc3s1500-5fg676 device, the pipelined implementation

of the basic block uses 4.63% fewer number of slices

and 6.93% fewer number of 4 input LUTs than the

reference design [8]. The total power consumed by the

pipelined basic block is 2.92% less than the reference

design [8].

Key Words: Verilog HDL, Logarithmic Number

System, Xilinx, LUT

1.INTRODUCTION

Multiplication is a fundamental operation in most signal
processing algorithms. As multipliers have large area, long
latency and consume considerable power, therefore high
speed multiplier design has been an important part in
VLSI system design. There has been extensive work on
high speed multipliers at technology, physical, circuit and
logic levels. As of systems performance is generally
determined by the performance of the multiplier because
the multiplier is generally the slowest element in the
system. Also multiplier is the most area consuming
element. Therefore while designing the important issue is
to optimize the speed and area of the multiplier.

1.1 Logarithmic Multiplication Methods
 In logarithmic multiplication, the input operands are first
converted into equivalent logarithms, and then the
logarithms of the two operands are added together and
finally the antilogarithm of the resultant sum is taken to
get the final result. The advantage is that multiplication is
replaced by addition. LNS multipliers can be generally
divided into two categories, first is based on lookup tables
method and interpolations, and the second one is based on
Mitchell’s algorithm (MA) [1].

A binary number, N in the interval where

& can be represented

as:

(1)

or (2) where

 Le (3)Then a binary number can be

written as:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 62

(4) where k is referred

to the characteristic of the number and m represents the
binary fraction or the mantissa.

Mitchell’s Algorithm: One of the most significant
multiplication methods in LNS is Mitchell’s algorithm. It is
essential to approximate the values of logarithm and the
antilogarithm which can be derived from a binary
representation of the numbers.
The logarithm of the product is

(5)

The expression is approximated with and

the logarithm of the two number’s product is expressed as
the sum of their characteristic numbers and mantissas:

(6)

The characteristic numbers and represent the places

of the most significant operands’ bits with the value of ‘1’.
For 16-bit numbers, the range for characteristic numbers
is from 0 to 15. The fractions and are in range [0, 1).

The final MA approximation for the multiplication
where depends on the carry bit from the

sum of the mantissas and is given by:

(7)
The final approximation for the product (7) requires the
comparison of the sum of the mantissas with ‘1’.The sum
of the characteristic numbers determines the most
significant bit of the product. After that the sum of the
mantissas is then scaled (shifted left) by or

by , depending on the .

If , the sum of mantissas is added to the most

significant bit of product to complete the final result.
Otherwise, we approximate the product only with the
scaled sum of mantissas.

Algorithm 1:

1. : n-bits binary multiplicands, = 0:2 n-bits

approximate product
2. Calculate : leading one position of

3. Calculate : leading one position of

4. Calculate : shift to the left by bits

5. Calculate : shift to the left by bits

6. Calculate

7. Calculate

8. IF

(a) Calculate

(b) Decode and insert in that position of

ELSE:
(a) Decode and insert ‘1’ in that position of

(b) Append immediately after this one in

9. Approximate

The MA produces a significant error percentage. The
relative error increases with the number of bits with the
value of ‘1’ in the mantissas. The maximum possible
relative error for MA multiplication is around 11%, and
the average error is around 3.8% .The error in MA is
always positive so it can be reduced by successive
multiplications.

Mitchell analyzed this error and proposed the following
analytical expression for the error correction:

 (8)
where and are the

correction terms proposed by Mitchell.

To calculate the correction terms we have to:
1. Calculate or depending on

in the same way as described in (7),

2. Scale the correction term by the factor ,

3. Add the correction term to the product .

1.2 An Iterative Algorithm Based Logarithmic
Multiplier:

A binary number can be written as:

(9)

where k is referred to the characteristic of the number and
m represents the binary fraction or the mantissa.

We can derive a correct expression for the multiplication:

(10)

To avoid the approximation error, we have to take into
account the next relation derived from (9):

(11)

The combination of (10) and (11) gives:

 (12)

Let

(13)

be the first approximation of the product.
It is evident that

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 63

(14)

Instead approximating the product as proposed in (12),
we can calculate the product in the

same way as and repeat the procedure until exact

result is obtained.

Algorithm 2:

1. , : n-bits binary multiplicands, 0: 2n-bits

first approximation, 0: 2n-bits correction terms,

 = 0: 2n-bits product

2. Calculate : leading one position of

3. Calculate : leading one position of

4. Calculate : shift to the left by

bits

5. Calculate : shift to the left by

bits

6. Calculate

7. Calculate : decode

8. Calculate : add , and

9. Repeat -times or until. , or :

(a) Set: , (b) Calculate :

leading one position of

(c) Calculate : leading one position of

(d) Calculate : shift to the left by

bits\

 (e) Calculate : shift to the left by

bits

 (f) Calculate

 (g) Calculate : decode

(h) Calculate : add , and

 10.

One of the advantages of the proposed solution is the
possibility to achieve an arbitrary accuracy by selecting
the number of iterations, i.e., the number of additional
correction circuits, but more important is that the
calculation of the correction terms can start immediately
after removing the leading ones from the original
operands.

2. Hardware Implementation:
 A basic block (BB) is a simple multiplier with no
correction terms. The main function of the basic block is to
calculate one approximate product according to (12). The
16-bit basic block is presented in Figure1. This basic block
consists of two leading-one detectors (LODs), two 32-bit
barrel shifters, a decoder unit and one 4-bit, two encoders
and two 32-bit adders.

 In the basic block, inputs operands are applied to
the LOD units. The LOD units are used to remove the
leading one from the operands. The input operands and
the output of the LOD are then XORed, to get rid of the
leading one of the input operands. The output of the LOD
is then applied to the priority encoder to encode the value
of the leading one in the input operands. The output from
the XOR gate is then shifted with the help of barrel shifter
according to the encoded value from the priority encoder.
The encoded values from the priority encoders are then
added together and decoded, similarly the output from the
barrel shifters are added together. The decoded value of
the adder and the sum of barrel shifters output, are then
again added to form the output of the basic block.

Fig 1: Block Diagram of Basic Block

2.1 Pipelined implementation of the basic block:
To decrease the maximum combinational delay in the
basic block, we used pipelining to implement the basic
block from Figure 1. The pipelined implementation of the
basic block is shown in Figure 2and has four stages.
 The stage 1 calculates the two characteristic
numbers , and the two

residues . The residues are outputted

in stage 2, which also calculates ;

and . The stage 3 calculates

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 64

 and . The stage 4

calculates the approximation of the product .

Fig 2: A pipelined basic block

2.2 Constraints of the implemented design:

Following are the constraints of the implemented design
proposed in this thesis work:

1) The presented implementation of the logarithmic
multiplier is for unsigned numbers i.e. the input to

this module must only be unsigned numbers. For
signed input operand the output will not be
correct.

2) The presented design will work for all unsigned
numbers except zero input operand. According to
the design, the output will be unknown for zero
input operand.

3. Simulation Results:

The simulation waveform of the pipelined implementation
of the basic block is shown in the figure 3.Here when the
reset pin is high, the output is zero. The output is unknown
for the zero input operands. On applying the input
operands, the output appears after the fourth clock cycle.

Fig 3: Simulation waveform of pipelined basic block

4. Discussions

Here we compare our design for the number of slices,
number of 4-input LUTs used to implement the design on
the target chip also the power consumption at 25 MHz
clock frequency. The data for comparison are taken from
the reference paper [8].
The following table shows the comparison of the
implemented design of the module with reference design
[8]:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 65

Table -1: Comparison of the implemented design of the
module with reference design [8]

Module Referenc
e Design

Implement
ed Design

Percentage
reduction

 Nu
mb
er
of

Slic
es

Nu
mb
er
of
4-

inp
ut
LU
Ts

Nu
mb
er
of

Slic
es

Num
ber

of 4-
inpu

t
LUTs

Num
ber
of

Slice
s

Num
ber

of 4-

input
LUTs

Non-
pipeline
d Basic
Block

27
6

533

190

372

32.16
%

30.21
%

Pipeline
d Basic
Block

21
6

404

201

363

6.95
%

10.15
%

Pipeline
d Basic
Block
with
one

error
correcti
on unit

42
7

803

415

764

2.81
%

4.86
%

For non-pipelined implementation of basic block the
design uses 31.16% fewer number of slices and 30.21%
fewer number of 4-input LUTs. The pipelined
implementation of basic block the design uses 6.95%
fewer number of slices and 10.15% fewer number of 4-
input LUTs. The pipelined basic block with one error
correction unit uses 2.81% fewer number of slices and
4.86% fewer number of 4-input LUTs. The pipelined basic
block with two error correction unit uses 2.52% fewer
number of slices and 3.36% fewer number of 4-input
LUTs.
The comparison of total power consumed by the
implemented design with the reference design [8] is
shown in table 2.For the pipelined implementation of basic
block, there is a reduction of 2.92% of total power
consumed. The pipelined basic block with one error
correction unit uses 1.70% less total power. The pipelined

basic block with two error correction unit uses 3.42% less
total power.

Table -2:Comparison of total power consumed by the
implemented design with the reference design [8]

Module Total
power

consumed
by the

reference
design

(mW)

Total power
consumed by

the
implemented

design

(mW)

Percentage

Reduction

Pipelined
Basic
Block

207.04

202.0

2.92%

Pipelined
Basic
Block
with one
error
correction
unit

211.6

208.0

1.70%

REFERENCES:

 [1] J.N. Mitchell, Computer multiplication and division
using binary logarithms, IRE Transactions on Electronic
Computers EC-11 (1962) 512–517.
[2] K.H. Abed, R.E. Sifred, CMOS VLSI implementation of a
low-power logarithmic converter, IEEE Transactions on
Computers 52 (11) (2003) 1421–1433.
[3] K.H. Abed, R.E. Sifred, VLSI implementation of a low-
power leading one detector, IEEE Transactions on
Computers (2003)
[4] S Ramaswamy, R. Siferd, “CMOS VLSI implementation
of a digital logarithmic multiplier”. Proceedings of the IEEE
Notional Aerospace and Electronics Conference, vol 1, pp
291-294. May1996
[5] K.H. Abed, R.E. Sifred, VLSI implementation of a low-
power antilogarithmic converter, IEEE Transactions on
Computers 52 (9) (2003) 1221–1228.
[6] D.J. Mclaren, Improved Mitchell-based logarithmic
multiplier for low-power DSP applications, in: Proceedings
of IEEE International SOC Conference 2003,17–20
September 2003, pp. 53–56.
[7] V. Mahalingam, N. Rangantathan, Improving accuracy
in Mitchell’s logarithmic multiplication using operand

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 66

decomposition, IEEE Transactions on Computers55 (2)
(2006) 1523–1535.
 [8] Z. Babic, A. Avramovic, P. Bulic,”An iterative
logarithmic multiplier”, 2010 IEEE Transactions on
Computer Design(ICCD), pp.235-240.
 [9] Samir Palnitkar, Verilog HDL: A Guide to Digital Design
and Synthesis
[10]J. Bhasker, Verilog HDL Synthesis, A Practical Primer
[11] Michael D. Ciletti, Advanced Digital Design with the
Verilog HDL
[12] Stephen Brown &ZvonkoVranesic, Fundamentals of
Digital Logic with Verilog Design
[13] M.Morris Mano, Computer System Architecture
[14] Xilinx ISE WebPACK Design Software, 2010
<http://www.xilinx.com/tools/ webpack.htm>.

[15] Xilinx Inc. Spartan-3 FPGA Data Sheets, 2009
<http://www.xilinx.com/
support/documentation/spartan-3_data_sheets.htm>.

BIOGRAPHIES

Mrs. Laxmi Kosta is currently
working as Lecturer in RGCER,
Nagpur in ETC Department.
Completed M.Tech (Embedded
System &VLSI Design) from
GGITS, Jabalpur (MP) and
B.E.(Electronics &
Communication Engineering)
from Jabalpur Engineering
College, Jabalpur (MP)

Ms. Jaspreet Hora is currently
working as Lecturer in RGCER,
Nagpur in ETC Department.
Completed M.Tech (VLSI) from
GHRAET, Nagpur and
B.E.(Electronics) from RTMNU,
Nagpur

Ms. Rupa Tomaskar is currently
working as Lecturer in WCEM,
Nagpur in ETC Department.
Completed M.Tech (Electronics)
from GHRAET, Nagpur and
B.E.(Electronics) from RTMNU,
Nagpur

