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Abstract - Software defect prediction is the most 
prominent system in the program testing, in which a 
defect has to be predicted exactly in order to keep away 
from the most risk factors. The classification of error rates 
in the program defect prediction module need to be done 
carefully to keep away from the misclassification of error 
rates. In the existing work, two-stage cost sensitive 
learning system is used to foretell the program defects in 
which misclassification rate is reduced considerable by 
introducing the idea of thinking about the cost factor in 
feature choice stage and as well as in classification stage. 
However this lacks in performance due to its more time 
consumption to foretell the program defects and also the 
existing system cannot support the large scale of 
knowledge effectively as like tiny scale of knowledge. To 
overcome this issue, in this work, linear twin core vector 
machine idea is introduced. This proposed work is used to 
pick the optimal features and also it can select both linear 
type of knowledge and non linear type of knowledge. The 
experimental results show that the proposed methodology 
is better than the existing methodology. 
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1. INTRODUCTION 

A application bug is a mistake, flaw, failure, or fault in a 
computer program or technique that causes it to produce 
an incorrect or unexpected result, or to behave in 
unintended ways. Most bugs arise from mistakes and 
errors made by people in either a program's source code 
or its design, or in frameworks and operating systems 
used by such programs, as well as a few are caused by 
compilers producing incorrect code. A program that 
contains a huge number of bugs, and/or bugs that 
seriously interfere with its functionality, is said to be 
buggy. Reports detailing bugs in a program are often 
known as bug  

Reports, defect reports, fault reports, issue reports, 
trouble reports, change requests, and so forth. 

Bugs trigger errors that can in turn have a wide selection 
of ripple effects, with varying levels of inconvenience to 

the user of the program. Some bugs have only a subtle 
effect on the program's functionality, and may thus lie 
undetected for a long time. More serious bugs may cause 
the program to crash or freeze. Others qualify as security 
bugs and might for example enable a malicious user to 
bypass access controls in order to receive unauthorized 
privileges. 

How bugs get in to application 

In application development projects, a "mistake" or "fault" 
can be introduced at any stage in the work of 
development. Bugs are a consequence of the nature of 
human factors in the programming task. They arise from 
oversights or mutual misunderstandings made by a 
application team in the work of specification, design, 
coding, information entry and documentation. For 
example, in making a comparatively simple program to 
sort a list of words in to alphabetical order, one's design 
might fail to think about what ought to happen when a 
word contains a hyphen. Perhaps, when converting the 
abstract design in to the selected programming language, 
might inadvertently generate an off-by-one error and fail 
to sort the last word in the list. Finally, when typing the 
resulting program in to the computer, might accidentally 
type a "<" where a ">" was intended, perhaps leading to 
the words being sorted in to reverse alphabetical order. 

Another section of bug is called a race condition that can 
occur when programs have multiple parts executing 
simultaneously, either on the same method or across 
multiple systems interacting across a network. If the parts 
interact in a different order than the developers intended, 
it may break the logical flow of the program. These bugs 
can be difficult to detect or anticipate, since they may not 
occur in the work of every execution of a program. 

Programming techniques 

Bugs often generate inconsistencies in the internal 
knowledge of a jogging program. Programs can be written 
to check the consistency of their own internal knowledge 
while jogging. If an inconsistency is encountered, the 
program can immediately halt, so that the bug can be 
located & fixed. Alternatively, the program can basically 
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tell the user, try to correct the inconsistency, & continue 
jogging. 

Development methodologies 

There's several schemes for managing programmer 
activity, so that fewer bugs are produced. Plenty of of 
these fall under the discipline of program engineering 
(which addresses program design issues as well). For 
example, formal program specifications are used to state 
the exact behavior of programs, so that design bugs can be 
eliminated. Regrettably, formal specifications are 
impractical or impossible for anything but the shortest 
programs, because of issues of combinatorial explosion & 
indeterminacy. 

Nowadays, popular approaches include automated unit 
testing & automated acceptance testing (sometimes going 
to the extreme of test-driven development), & agile 
program development (which is often combined with, or 
even in some cases mandates, automated testing). All of 
these approaches are supposed to catch bugs & poorly-
specified requirements soon after they are introduced, 
which ought to make them simpler & cheaper to fix, & to 
catch at least a number of them before they enter in to 
production use. 

 Software Defect prediction 

Identifying and locating defects in software 
projects is a difficult work. Especially, when project sizes 
grow, this task becomes expensive with sophisticated 
testing and evaluation mechanisms. On the other hand, 
measuring software in a continuous and disciplined 
manner brings many advantages such as accurate 
estimation of project costs and schedules, and improving 
product and process qualities. Detailed analysis of 
software metric data also gives significant clues about the 
locations of possible defects in a programming code. 

According to a survey carried out by the Standish Group, 
an average software project exceeded its budget by 90 
percent and its schedule by 222 percent (Chaos 
Chronicles, 1995). This survey took place in mid 90s and 
contained data from about 8-000 projects. These statistics 
show the importance of measuring the software early in 
its life cycle and taking the necessary precautions before 
these results come out. For the software projects carried 
out in the industry, an extensive metrics program is 
usually seen unnecessary and the practitioners start to 
stress on a metrics program when things are bad or when 
there is a need to satisfy some external assessment body. 

On the academic side, less concentration is devoted on 
the decision support power of software measurement. The 
results of these measurements are usually evaluated with 
naive methods like regression and correlation between 
values. However models for assessing software risk in 

terms of predicting defects in a specific module or function 
have also been proposed in the previous research (Fenton 
and Neil, 1999). Some recent models also utilize machine-
learning techniques for defect predicting (Neumann, 
2002). But the main drawback of using machine learning 
in software defect prediction is the scarcity of data. Most 
of the companies do not share their software metric data 
with other organizations so that a useful database with 
great amount of data cannot be formed. However, there 
are publicly available well-established tools for extracting 
metrics such as size, McCabe’s cyclamate complexity, and 
Halstead’s program vocabulary. These tools help 
automating the data collection process in software 
projects. 

A well established metrics program yields to better 
estimations of cost and schedule. Besides, the analyses of 
measured metrics are good indicators of possible defects 
in the software being developed. Testing is the most 
popular method for defect detection in most of the 
software projects. However, when projects’ sizes grow in 
terms of both lines of code and effort spent, the task of 
testing gets more difficult and computationally expensive 
with the use Identifying and locating defects in program 
projects is a difficult work. , when project sizes grow, this 
task becomes pricey with sophisticated testing and 
evaluation mechanisms. On the other hand, measuring 
program in a continuous and disciplined manner brings 
lots of advantages such as correct estimation of project 
costs and schedules, and improving product and method 
qualities. Detailed analysis of program metric knowledge 
also gives significant clues about the locations of feasible 
defects in a programming code. 

According to a survey carried out by the Standish Group, 
an average program project exceeded its budget by 90 
percent and its schedule by 222 percent (Chaos 
Chronicles, 1995). This survey took place in mid 90s and 
contained knowledge from about 8-000 projects. These 
statistics show the importance of measuring the program 
early in its life cycle and taking the necessary precautions 
before these results come out. For the program projects 
carried out in the industry, an extensive metrics program 
is usually seen unnecessary and the practitioners start to 
stress on a metrics program when things are bad or when 
there is a necessity to satisfy some outside assessment 
body. 

On the academic side, less concentration is devoted on the 
decision support power of program measurement. The 
results of these measurements are usually evaluated with 
naive methods like regression and correlation between 
values. However models for assessing program risk in 
terms of predicting defects in a specific module or function 
have also been proposed in the earlier research (Fenton 
and Neil, 1999). Some recent models also utilize machine-
learning techniques for defect predicting (Neumann, 
2002). But the main drawback of using machine learning 
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in program defect prediction is the shortage of knowledge. 
Most of the companies do not share their program metric 
knowledge with other organizations so that a useful 
database with large amount of knowledge cannot be 
formed. However, there are publicly available well-
established tools for extracting metrics such as size, 
McCabeâs cyclamate complexity, and Halsteadâs program 
vocabulary. These tools help automating the knowledge 
collection method in program projects. 

A well established metrics program yields to better 
estimations of cost and schedule. Besides, the analyses of 
measured metrics are nice indicators of feasible defects in 
the program being developed. Testing is the most popular 
technique for defect detection in most of the program 
projects. However, when projectsâ sizes grow in terms of 
both lines of code and hard work spent, the task of testing 
gets more difficult and computationally pricey with the 
use 

of sophisticated testing & evaluation procedures. 
Nevertheless, defects that are identified in earlier 
segments of programs can be clustered according to their 
various properties & most importantly according to their 
severity. If the relationship between the program metrics 
measured at a sure state & the defectsâ properties can be 
formulated together, it becomes feasible to foretell similar 
defects in other parts of the code written. 

The program metric information gives us the values for 
specific variables to measure a specific module/function 
or the whole program. When combined with the weighted 
error/defect information, this information set becomes 
the input for a machine learning process. A learning 
process is defined as a process that is said to learn from 
experience with respect to some class of tasks & 
performance measure, such that its performance at these 
tasks improves with experience (Mitchell, 1997). To 
design a learning process, the information set in this work 
is divided in to parts: the training information set & the 
testing information set. Some predictor functions are 
defined & trained with respect to Multi-Layer Perception 
& Decision Tree algorithms & the results are evaluated 
with the testing information set. 

2.  RELATED RESEARCH 

2.1 Cost-sensitive boosting neural networks for 
SDP  

Software defect predictors are tools to deal with this issue 
in a cost-effective way. Application defect predictors 
which classify the application modules in to defect-prone 
& not-defect-prone classes are effective tools to maintain 
the high quality of application products. In the work of the 
application defect prediction process, types of 
misclassification errors can be encountered. The type I 
misclassification happens when a not-fault-prone module 

is predicted as fault-prone while a sort II misclassification 
is that a fault prone module is classified as not-fault-prone. 
A sort I misclassification will lead to the waste of time & 
resources to review a non-faulty module. A sort II 
misclassification ends in the missed opportunity to correct 
a defective module that the faults may appear in the 
method testing or even in the field. The most often used 
measure is the misclassification rate which is defined as 
the ratio of the number of wrongly classified modules to 
the total number of modules. 

2.2 Applying Novel Re-sampling Strategies to SDP 

Accurate defect prediction is enormously important, 
because of the large economic impact of defective 
program. In program, a common rule of thumb is that 80% 
of the issues reside in only 20% of the modules. When they 
try to foretell the occurrence of faults in program where 
the giant majority of modules are fault-free, the classifier 
is often unable to detect the defective modules. This is a 
widely known issue in machine learning, often known as 
learning from imbalanced datasets. A knowledge set that is 
heavily skewed toward the majority class will sometimes 
generate classifiers that never predict the minority class. 
Due to the tremendous complexity & sophistication of 
program, improving program reliability is an enormously 
difficult task. Learning from imbalanced datasets is a 
current, active topic of research in the machine learning & 
knowledge mining communities. Imbalanced class 
distributions are a major issue in applying machine 
learning techniques to program defect prediction, & there 
has been tiny inquiry of stratification as a solution to this 
important issue. 

2.3 Software Defect Association Mining and       
Defect Correction Effort Prediction  

The success of a program process depends not only on 
cost and schedule, but also on quality. Among plenty of 
program quality characteristics, residual defects has 
become the de facto industry standard. The defect 
associations can be used for purposes: First, find as plenty 
of related defects as feasible to the detected defect(s) and, 
consequently, make more-effective corrections to the 
program. Second, help evaluate reviewers’ leads to the 
coursework of an inspection. Third, to assist managers in 
improving the program process through analysis of the 
reasons some defects often occur together. For the defect 
association prediction, the length-first strategy permits us 
to find out as plenty of defects as feasible that coincide 
with known defect(s), thus stopping errors due to 
incomplete discovery of defect associations. For the defect 
correction hard work prediction, the length-first strategy 
permits us to receive more-accurate rules, thus improving 
the hard work prediction accuracy. 
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2.4   Assessing Predictors of Software Defects  

When learning defect detectors from static code measures, 
NaiveBayes learners are better than entrophy-based 
decision-tree learners. Also, accuracy is not a useful way to 
evaluate those detectors. Further, those learners need no 
over 200-300 examples to learn adequate detectors, when 
the information has been heavily stratified; i.e. divided up 
in to sub-sub-sub systems (and by âadequateâ, they mean 
that those detectors perform  as well slower, more pricey 
manual inspections). If defect detectors are fascinating, 
they must somehow be better than known baselines in the 
literature. For example, think about manual code reviews. 
These reviews are labour intensive. Various assessment 
measures exist for information miners including 
readability (neural networks cannot succinctly document 
their theories in a human readable form); repeatability 
(genetic algorithms can return different theories after 
different runs); to name a few. If the objective of learning 
is to generate models that have some useful future 
validity, then the learned theory ought to be tested on 
information not used to build it. In a commercial setting, 
accessing information is difficult. Information miners need 
to know how small information they need to accomplish 
lovely results 

2.5 An Experimental Evaluation of an 
Experience-BasedCapture-Recapture Method 

Inspections are accepted widely in the program 
engineering community as efficient contributors to 
improved program quality and reduced costs. The 
efficiency of inspections are seldom questioned anymore. 
However for a specific inspection there is a necessity for 
quantitative methods to analyses the result of an 
inspection. The knowledge usually obtainable after an 
inspection are the number of defects. If the knowledge on 
remaining defects was obtainable, it could be applied to 
control the development method, in order to utilize the 
development resources in the most cost-effective manner. 
On longer knowledge runs, the window is to be tuned, 
keeping it as short as feasible to stay sensitive to 
environmental and team composition factors versus 
keeping it long to keep away from statistical variations. 
The programs solve small knowledge structure, statistics 
and numerical issues. The defects are hence not seeded in 
the code, but are actual defects introduced in the 
coursework of program development. Functional defects 
as well as cosmetic ones, like misspelled comments, are 
counted as defects. 

 
 
 
 
 
 

3. ARCHITECTURE 
 

3.1 System Architecture 
 

 
Figure 1 

 

Initially program programs are enter in to system after 
that program defect prediction system will be processed in 
this cost information will be processed & then 
preprocessing will be processed in this system the 
program programs are separated as defective program & 
defect free program after this system feature choice will 
be completed in this system more accuracy is calculated 
by using linear twin core model 

3.2   java platform 

One characteristic of Java is portability, which means that 
computer programs written in the Java language must run 
similarly on any supported hardware/operating-system 
platform. This is achieved by compiling the Java language 
code to an intermediate representation called Java byte 
code, in lieu of directly to platform-specific machine code. 
Java byte code instructions are analogous to machine code, 
but are intended to be interpreted by a virtual machine 
(VM) written specifically for the host hardware. End-users 
often use a Java Runtime Surroundings (JRE) installed on 
their own machine for standalone Java applications, or in a 
Web browser for Java applets. Standardized libraries 
provide a generic way to access host-specific features such 
as graphics, threading, & networking. 

A major benefit of using byte code is porting. However, the 
overhead of interpretation means that interpreted 
programs always run more slowly than programs 
compiled to native executables would. Just-in-Time 
compilers were introduced from an early stage that 
compiles byte codes to machine code in the coursework of 
runtime. Over the years, this JVM built-in feature has been 
optimized to a point where the JVM's performance 
competes with natively compiled C code 

Object oriented 

  To be an Object Oriented language, any language 
must follow at least the four characteristics. 
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 Inheritance   : It is the process of creating the new 
classes and using the behavior of the existing 
classes by extending them just to reuse the 
existing code and adding the additional features 
as needed.  

 Encapsulation:  It is the mechanism of combining 
the information and providing the abstraction. 

 Polymorphism   :  As the name suggest one name 
multiple form, Polymorphism is the way of 
providing the different functionality by 
the functions having the same name based on the 
signatures of the methods.  

 Dynamic binding:  Sometimes we don't have the 
knowledge of objects about their specific types 
while writing our code. It is the way of providing 
the maximum functionality to a program about 
the specific type at runtime.         

Multithreaded 
  As all of us know several features of Java like 
Secure, Robust, and Transportable, dynamic. Java is and a 
multithreaded programming language. Multithreading 
means a single program having different threads executing 
independently simultaneously. Multiple threads execute 
instructions according to the program code in a method or 
a program. Multithreading works the similar way as 
multiple processes. Multithreading programming is a 
fascinating idea in Java. In multithreaded programs not 
even a single thread disturbs the execution of other 
thread. Threads are obtained from the pool of obtainable 
prepared to run threads and they run on the method CPUs. 
This is how Multithreading works in Java which you will 
soon come to know in details in later chapters. 

Interpreted 
We all know that Java is an interpreted language as well. 
With an interpreted language such as Java, programs run 
directly from the source code. The interpreter program 
reads the source code & translates it on the fly in to 
computations. Thus, Java as an interpreted language 
depends on an interpreter program. The flexibility of 
being platform independent makes Java to outshine from 
other languages. The source code to be written & 
distributed is platform independent. Another advantage of 
Java as an interpreted language is its error debugging 
quality. Due to this any error occurring in the program 
gets traced. This is the way it is different to work with 
Java. 

4. IMPLEMENTATION AND RESULTS 
Software defect prediction can be done in the more correct 
manner without losing any defect knowledge. The 
optimized application prediction is done with the help of 
the optimized feature subset. These features are extracted 

by using the linear twin core support vector machine. & 
also optimized feature subset choice is done based on the 
f-score measure. 

Software Defect Prediction 

Based on the processes mentioned above, application 
defect is predicted & then the knowledge of that is used for 
the further processing. The application defect prediction 
method is described in the following algorithm. 

4.1. Module Description 
 
Cost information identification 

In this module the cost information associated 
with the each misclassification of software modules are 
assigned through cost matrix. 

There are three types of cost are classified. Those 
are 

   COI – Misclassifying the sample from the out group class 
as being from the in group class 
   CIO – Misclassifying the sample from the     in group class 
as being from the out group class 
   CII – Misclassifying the sample from the one in group 
class as being from another in group class 
 

Pre-processing Data 

In this module, the whole historical knowledge will be 
divided in to the partitions namely training knowledge & 
check knowledge. 

   After that the pre-processing will be applied to 
both training knowledge & testing knowledge to convert 
in to the form that can be used in further stages 

Cost Sensitive Classification 

     In this module classification will be done on test 
data’s based on optimal features that are selected from the 
training data. 

LSTVM based Feature Subset Selection 

Feature Selection, also known as attribute 
selection, is one of the significant issues in the 
construction of classification model. Feature selection is 
used to reduce the number of input features and select 
relevant features for a classifier to improve its predictive 
performance. FS is responsible for obtaining relevant data 
for future analysis, as per problem formulation. Since 
there are lots of software metrics available in software 
dataset repository, so FS select significant feature which in 
turn will reduce the total project cost. F-score is one of the 
simple and significant feature selection techniques which 
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is mostly used in machine learning. It calculates the 
discrimination between two sets of real numbers. Let 
number of +ve and –ve samples are symbolized by ‘m’ and 
‘n’ respectively and xk is any training vectors, then the F-
score froth feature is evaluated as 

F(i) = 
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mean of positive ith feature and mean of negative ith 
feature respectively.  
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      = ith feature of k-positive and k-negative 
samples correspondingly.  

The larger value of F-score indicates that the 
corresponding feature is more discriminative or highly 
significant 

Algorithm 

Step1: Load the Software defect dataset from PROMISE 
repository.  

Step2: Perform pre-processing of the dataset.  

Step3: Divide the dataset using k-fold cross validation 
process.  

Step4: Calculate the F-score for each feature and arrange 
them in descending order.  

Step5: Generate new dataset with N features, where N=1… 
m, m is the total number of feature.  

Step6: Train the model for each feature subset.  

Step7: Compare the results with different feature subset 
and with other existing data mining approaches.  

Step 8: Select the feature subset showing highest accuracy. 

5. CONCLUSION 

Software defect prediction is the most important method 
in the program development which need to be completed 
with most concentration. In this work, linear twin core 
expertise is implemented in order to deduct the defect 
fastly with more accuracy. This linear twin score 
methodology is based on the F-score feature choice 
technique which is used to pick significant feature which 

are helpful to foretell defects in program modules. There is 
a significant difference in classifier performance which is 

Developed using new feature subset as compared 
to the classifier built on complete feature set. This 
research discloses the effectiveness of proposed feature 
selection based LSTSVM approach in predicting defective 
software modules and suggests that the proposed model 
can be useful in predicting software quality. 
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