
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 665

PREDICTION OF SOFTWARE DEFECT USING LINEAR TWIN CORE

VECTOR MACHINE MODEL

Dr.P.Ganeshkumar, S.Kalaivani

1 Assistant Professor, Department of Information Technology, Anna University Regional center, Tamilnadu , India
2 Student, Department of Information Technology, Anna University Regional center, Tamilnadu , India

---***---
Abstract - Software defect prediction is the most
prominent system in the program testing, in which a
defect has to be predicted exactly in order to keep away
from the most risk factors. The classification of error rates
in the program defect prediction module need to be done
carefully to keep away from the misclassification of error
rates. In the existing work, two-stage cost sensitive
learning system is used to foretell the program defects in
which misclassification rate is reduced considerable by
introducing the idea of thinking about the cost factor in
feature choice stage and as well as in classification stage.
However this lacks in performance due to its more time
consumption to foretell the program defects and also the
existing system cannot support the large scale of
knowledge effectively as like tiny scale of knowledge. To
overcome this issue, in this work, linear twin core vector
machine idea is introduced. This proposed work is used to
pick the optimal features and also it can select both linear
type of knowledge and non linear type of knowledge. The
experimental results show that the proposed methodology
is better than the existing methodology.

Key Words
 Application defect prediction, Cost sensitive learning,
Feature choice, linear twin core vector machine

1. INTRODUCTION

A application bug is a mistake, flaw, failure, or fault in a
computer program or technique that causes it to produce
an incorrect or unexpected result, or to behave in
unintended ways. Most bugs arise from mistakes and
errors made by people in either a program's source code
or its design, or in frameworks and operating systems
used by such programs, as well as a few are caused by
compilers producing incorrect code. A program that
contains a huge number of bugs, and/or bugs that
seriously interfere with its functionality, is said to be
buggy. Reports detailing bugs in a program are often
known as bug

Reports, defect reports, fault reports, issue reports,
trouble reports, change requests, and so forth.

Bugs trigger errors that can in turn have a wide selection
of ripple effects, with varying levels of inconvenience to

the user of the program. Some bugs have only a subtle
effect on the program's functionality, and may thus lie
undetected for a long time. More serious bugs may cause
the program to crash or freeze. Others qualify as security
bugs and might for example enable a malicious user to
bypass access controls in order to receive unauthorized
privileges.

How bugs get in to application

In application development projects, a "mistake" or "fault"
can be introduced at any stage in the work of
development. Bugs are a consequence of the nature of
human factors in the programming task. They arise from
oversights or mutual misunderstandings made by a
application team in the work of specification, design,
coding, information entry and documentation. For
example, in making a comparatively simple program to
sort a list of words in to alphabetical order, one's design
might fail to think about what ought to happen when a
word contains a hyphen. Perhaps, when converting the
abstract design in to the selected programming language,
might inadvertently generate an off-by-one error and fail
to sort the last word in the list. Finally, when typing the
resulting program in to the computer, might accidentally
type a "<" where a ">" was intended, perhaps leading to
the words being sorted in to reverse alphabetical order.

Another section of bug is called a race condition that can
occur when programs have multiple parts executing
simultaneously, either on the same method or across
multiple systems interacting across a network. If the parts
interact in a different order than the developers intended,
it may break the logical flow of the program. These bugs
can be difficult to detect or anticipate, since they may not
occur in the work of every execution of a program.

Programming techniques

Bugs often generate inconsistencies in the internal
knowledge of a jogging program. Programs can be written
to check the consistency of their own internal knowledge
while jogging. If an inconsistency is encountered, the
program can immediately halt, so that the bug can be
located & fixed. Alternatively, the program can basically

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 666

tell the user, try to correct the inconsistency, & continue
jogging.

Development methodologies

There's several schemes for managing programmer
activity, so that fewer bugs are produced. Plenty of of
these fall under the discipline of program engineering
(which addresses program design issues as well). For
example, formal program specifications are used to state
the exact behavior of programs, so that design bugs can be
eliminated. Regrettably, formal specifications are
impractical or impossible for anything but the shortest
programs, because of issues of combinatorial explosion &
indeterminacy.

Nowadays, popular approaches include automated unit
testing & automated acceptance testing (sometimes going
to the extreme of test-driven development), & agile
program development (which is often combined with, or
even in some cases mandates, automated testing). All of
these approaches are supposed to catch bugs & poorly-
specified requirements soon after they are introduced,
which ought to make them simpler & cheaper to fix, & to
catch at least a number of them before they enter in to
production use.

 Software Defect prediction

Identifying and locating defects in software
projects is a difficult work. Especially, when project sizes
grow, this task becomes expensive with sophisticated
testing and evaluation mechanisms. On the other hand,
measuring software in a continuous and disciplined
manner brings many advantages such as accurate
estimation of project costs and schedules, and improving
product and process qualities. Detailed analysis of
software metric data also gives significant clues about the
locations of possible defects in a programming code.

According to a survey carried out by the Standish Group,
an average software project exceeded its budget by 90
percent and its schedule by 222 percent (Chaos
Chronicles, 1995). This survey took place in mid 90s and
contained data from about 8-000 projects. These statistics
show the importance of measuring the software early in
its life cycle and taking the necessary precautions before
these results come out. For the software projects carried
out in the industry, an extensive metrics program is
usually seen unnecessary and the practitioners start to
stress on a metrics program when things are bad or when
there is a need to satisfy some external assessment body.

On the academic side, less concentration is devoted on
the decision support power of software measurement. The
results of these measurements are usually evaluated with
naive methods like regression and correlation between
values. However models for assessing software risk in

terms of predicting defects in a specific module or function
have also been proposed in the previous research (Fenton
and Neil, 1999). Some recent models also utilize machine-
learning techniques for defect predicting (Neumann,
2002). But the main drawback of using machine learning
in software defect prediction is the scarcity of data. Most
of the companies do not share their software metric data
with other organizations so that a useful database with
great amount of data cannot be formed. However, there
are publicly available well-established tools for extracting
metrics such as size, McCabe’s cyclamate complexity, and
Halstead’s program vocabulary. These tools help
automating the data collection process in software
projects.

A well established metrics program yields to better
estimations of cost and schedule. Besides, the analyses of
measured metrics are good indicators of possible defects
in the software being developed. Testing is the most
popular method for defect detection in most of the
software projects. However, when projects’ sizes grow in
terms of both lines of code and effort spent, the task of
testing gets more difficult and computationally expensive
with the use Identifying and locating defects in program
projects is a difficult work. , when project sizes grow, this
task becomes pricey with sophisticated testing and
evaluation mechanisms. On the other hand, measuring
program in a continuous and disciplined manner brings
lots of advantages such as correct estimation of project
costs and schedules, and improving product and method
qualities. Detailed analysis of program metric knowledge
also gives significant clues about the locations of feasible
defects in a programming code.

According to a survey carried out by the Standish Group,
an average program project exceeded its budget by 90
percent and its schedule by 222 percent (Chaos
Chronicles, 1995). This survey took place in mid 90s and
contained knowledge from about 8-000 projects. These
statistics show the importance of measuring the program
early in its life cycle and taking the necessary precautions
before these results come out. For the program projects
carried out in the industry, an extensive metrics program
is usually seen unnecessary and the practitioners start to
stress on a metrics program when things are bad or when
there is a necessity to satisfy some outside assessment
body.

On the academic side, less concentration is devoted on the
decision support power of program measurement. The
results of these measurements are usually evaluated with
naive methods like regression and correlation between
values. However models for assessing program risk in
terms of predicting defects in a specific module or function
have also been proposed in the earlier research (Fenton
and Neil, 1999). Some recent models also utilize machine-
learning techniques for defect predicting (Neumann,
2002). But the main drawback of using machine learning

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 667

in program defect prediction is the shortage of knowledge.
Most of the companies do not share their program metric
knowledge with other organizations so that a useful
database with large amount of knowledge cannot be
formed. However, there are publicly available well-
established tools for extracting metrics such as size,
McCabeâs cyclamate complexity, and Halsteadâs program
vocabulary. These tools help automating the knowledge
collection method in program projects.

A well established metrics program yields to better
estimations of cost and schedule. Besides, the analyses of
measured metrics are nice indicators of feasible defects in
the program being developed. Testing is the most popular
technique for defect detection in most of the program
projects. However, when projectsâ sizes grow in terms of
both lines of code and hard work spent, the task of testing
gets more difficult and computationally pricey with the
use

of sophisticated testing & evaluation procedures.
Nevertheless, defects that are identified in earlier
segments of programs can be clustered according to their
various properties & most importantly according to their
severity. If the relationship between the program metrics
measured at a sure state & the defectsâ properties can be
formulated together, it becomes feasible to foretell similar
defects in other parts of the code written.

The program metric information gives us the values for
specific variables to measure a specific module/function
or the whole program. When combined with the weighted
error/defect information, this information set becomes
the input for a machine learning process. A learning
process is defined as a process that is said to learn from
experience with respect to some class of tasks &
performance measure, such that its performance at these
tasks improves with experience (Mitchell, 1997). To
design a learning process, the information set in this work
is divided in to parts: the training information set & the
testing information set. Some predictor functions are
defined & trained with respect to Multi-Layer Perception
& Decision Tree algorithms & the results are evaluated
with the testing information set.

2. RELATED RESEARCH

2.1 Cost-sensitive boosting neural networks for
SDP

Software defect predictors are tools to deal with this issue
in a cost-effective way. Application defect predictors
which classify the application modules in to defect-prone
& not-defect-prone classes are effective tools to maintain
the high quality of application products. In the work of the
application defect prediction process, types of
misclassification errors can be encountered. The type I
misclassification happens when a not-fault-prone module

is predicted as fault-prone while a sort II misclassification
is that a fault prone module is classified as not-fault-prone.
A sort I misclassification will lead to the waste of time &
resources to review a non-faulty module. A sort II
misclassification ends in the missed opportunity to correct
a defective module that the faults may appear in the
method testing or even in the field. The most often used
measure is the misclassification rate which is defined as
the ratio of the number of wrongly classified modules to
the total number of modules.

2.2 Applying Novel Re-sampling Strategies to SDP

Accurate defect prediction is enormously important,
because of the large economic impact of defective
program. In program, a common rule of thumb is that 80%
of the issues reside in only 20% of the modules. When they
try to foretell the occurrence of faults in program where
the giant majority of modules are fault-free, the classifier
is often unable to detect the defective modules. This is a
widely known issue in machine learning, often known as
learning from imbalanced datasets. A knowledge set that is
heavily skewed toward the majority class will sometimes
generate classifiers that never predict the minority class.
Due to the tremendous complexity & sophistication of
program, improving program reliability is an enormously
difficult task. Learning from imbalanced datasets is a
current, active topic of research in the machine learning &
knowledge mining communities. Imbalanced class
distributions are a major issue in applying machine
learning techniques to program defect prediction, & there
has been tiny inquiry of stratification as a solution to this
important issue.

2.3 Software Defect Association Mining and
Defect Correction Effort Prediction

The success of a program process depends not only on
cost and schedule, but also on quality. Among plenty of
program quality characteristics, residual defects has
become the de facto industry standard. The defect
associations can be used for purposes: First, find as plenty
of related defects as feasible to the detected defect(s) and,
consequently, make more-effective corrections to the
program. Second, help evaluate reviewers’ leads to the
coursework of an inspection. Third, to assist managers in
improving the program process through analysis of the
reasons some defects often occur together. For the defect
association prediction, the length-first strategy permits us
to find out as plenty of defects as feasible that coincide
with known defect(s), thus stopping errors due to
incomplete discovery of defect associations. For the defect
correction hard work prediction, the length-first strategy
permits us to receive more-accurate rules, thus improving
the hard work prediction accuracy.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 668

2.4 Assessing Predictors of Software Defects

When learning defect detectors from static code measures,
NaiveBayes learners are better than entrophy-based
decision-tree learners. Also, accuracy is not a useful way to
evaluate those detectors. Further, those learners need no
over 200-300 examples to learn adequate detectors, when
the information has been heavily stratified; i.e. divided up
in to sub-sub-sub systems (and by âadequateâ, they mean
that those detectors perform as well slower, more pricey
manual inspections). If defect detectors are fascinating,
they must somehow be better than known baselines in the
literature. For example, think about manual code reviews.
These reviews are labour intensive. Various assessment
measures exist for information miners including
readability (neural networks cannot succinctly document
their theories in a human readable form); repeatability
(genetic algorithms can return different theories after
different runs); to name a few. If the objective of learning
is to generate models that have some useful future
validity, then the learned theory ought to be tested on
information not used to build it. In a commercial setting,
accessing information is difficult. Information miners need
to know how small information they need to accomplish
lovely results

2.5 An Experimental Evaluation of an
Experience-BasedCapture-Recapture Method

Inspections are accepted widely in the program
engineering community as efficient contributors to
improved program quality and reduced costs. The
efficiency of inspections are seldom questioned anymore.
However for a specific inspection there is a necessity for
quantitative methods to analyses the result of an
inspection. The knowledge usually obtainable after an
inspection are the number of defects. If the knowledge on
remaining defects was obtainable, it could be applied to
control the development method, in order to utilize the
development resources in the most cost-effective manner.
On longer knowledge runs, the window is to be tuned,
keeping it as short as feasible to stay sensitive to
environmental and team composition factors versus
keeping it long to keep away from statistical variations.
The programs solve small knowledge structure, statistics
and numerical issues. The defects are hence not seeded in
the code, but are actual defects introduced in the
coursework of program development. Functional defects
as well as cosmetic ones, like misspelled comments, are
counted as defects.

3. ARCHITECTURE

3.1 System Architecture

Figure 1

Initially program programs are enter in to system after
that program defect prediction system will be processed in
this cost information will be processed & then
preprocessing will be processed in this system the
program programs are separated as defective program &
defect free program after this system feature choice will
be completed in this system more accuracy is calculated
by using linear twin core model

3.2 java platform

One characteristic of Java is portability, which means that
computer programs written in the Java language must run
similarly on any supported hardware/operating-system
platform. This is achieved by compiling the Java language
code to an intermediate representation called Java byte
code, in lieu of directly to platform-specific machine code.
Java byte code instructions are analogous to machine code,
but are intended to be interpreted by a virtual machine
(VM) written specifically for the host hardware. End-users
often use a Java Runtime Surroundings (JRE) installed on
their own machine for standalone Java applications, or in a
Web browser for Java applets. Standardized libraries
provide a generic way to access host-specific features such
as graphics, threading, & networking.

A major benefit of using byte code is porting. However, the
overhead of interpretation means that interpreted
programs always run more slowly than programs
compiled to native executables would. Just-in-Time
compilers were introduced from an early stage that
compiles byte codes to machine code in the coursework of
runtime. Over the years, this JVM built-in feature has been
optimized to a point where the JVM's performance
competes with natively compiled C code

Object oriented

 To be an Object Oriented language, any language
must follow at least the four characteristics.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 669

 Inheritance : It is the process of creating the new
classes and using the behavior of the existing
classes by extending them just to reuse the
existing code and adding the additional features
as needed.

 Encapsulation: It is the mechanism of combining
the information and providing the abstraction.

 Polymorphism : As the name suggest one name
multiple form, Polymorphism is the way of
providing the different functionality by
the functions having the same name based on the
signatures of the methods.

 Dynamic binding: Sometimes we don't have the
knowledge of objects about their specific types
while writing our code. It is the way of providing
the maximum functionality to a program about
the specific type at runtime.

Multithreaded
 As all of us know several features of Java like
Secure, Robust, and Transportable, dynamic. Java is and a
multithreaded programming language. Multithreading
means a single program having different threads executing
independently simultaneously. Multiple threads execute
instructions according to the program code in a method or
a program. Multithreading works the similar way as
multiple processes. Multithreading programming is a
fascinating idea in Java. In multithreaded programs not
even a single thread disturbs the execution of other
thread. Threads are obtained from the pool of obtainable
prepared to run threads and they run on the method CPUs.
This is how Multithreading works in Java which you will
soon come to know in details in later chapters.

Interpreted
We all know that Java is an interpreted language as well.
With an interpreted language such as Java, programs run
directly from the source code. The interpreter program
reads the source code & translates it on the fly in to
computations. Thus, Java as an interpreted language
depends on an interpreter program. The flexibility of
being platform independent makes Java to outshine from
other languages. The source code to be written &
distributed is platform independent. Another advantage of
Java as an interpreted language is its error debugging
quality. Due to this any error occurring in the program
gets traced. This is the way it is different to work with
Java.

4. IMPLEMENTATION AND RESULTS
Software defect prediction can be done in the more correct
manner without losing any defect knowledge. The
optimized application prediction is done with the help of
the optimized feature subset. These features are extracted

by using the linear twin core support vector machine. &
also optimized feature subset choice is done based on the
f-score measure.

Software Defect Prediction

Based on the processes mentioned above, application
defect is predicted & then the knowledge of that is used for
the further processing. The application defect prediction
method is described in the following algorithm.

4.1. Module Description

Cost information identification

In this module the cost information associated
with the each misclassification of software modules are
assigned through cost matrix.

There are three types of cost are classified. Those
are

 COI – Misclassifying the sample from the out group class
as being from the in group class
 CIO – Misclassifying the sample from the in group class
as being from the out group class
 CII – Misclassifying the sample from the one in group
class as being from another in group class

Pre-processing Data

In this module, the whole historical knowledge will be
divided in to the partitions namely training knowledge &
check knowledge.

 After that the pre-processing will be applied to
both training knowledge & testing knowledge to convert
in to the form that can be used in further stages

Cost Sensitive Classification

 In this module classification will be done on test
data’s based on optimal features that are selected from the
training data.

LSTVM based Feature Subset Selection

Feature Selection, also known as attribute
selection, is one of the significant issues in the
construction of classification model. Feature selection is
used to reduce the number of input features and select
relevant features for a classifier to improve its predictive
performance. FS is responsible for obtaining relevant data
for future analysis, as per problem formulation. Since
there are lots of software metrics available in software
dataset repository, so FS select significant feature which in
turn will reduce the total project cost. F-score is one of the
simple and significant feature selection techniques which

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 670

is mostly used in machine learning. It calculates the
discrimination between two sets of real numbers. Let
number of +ve and –ve samples are symbolized by ‘m’ and
‘n’ respectively and xk is any training vectors, then the F-
score froth feature is evaluated as

F(i) =

  












m

1k

n

1k

2(-)

i

(-)

ik,

2)(

i

)(

ik,

2

i

(-)

i

2

i

)(

i

)x-(x
1n

1
)x - (x

1m

1

)xx()x - x(

Where

(-)

i

)(

ii x,x,x 

 = the mean of the total ith features,
mean of positive ith feature and mean of negative ith
feature respectively.

(-)

k,i

)(

k,i x,x 

 = ith feature of k-positive and k-negative
samples correspondingly.

The larger value of F-score indicates that the
corresponding feature is more discriminative or highly
significant

Algorithm

Step1: Load the Software defect dataset from PROMISE
repository.

Step2: Perform pre-processing of the dataset.

Step3: Divide the dataset using k-fold cross validation
process.

Step4: Calculate the F-score for each feature and arrange
them in descending order.

Step5: Generate new dataset with N features, where N=1…
m, m is the total number of feature.

Step6: Train the model for each feature subset.

Step7: Compare the results with different feature subset
and with other existing data mining approaches.

Step 8: Select the feature subset showing highest accuracy.

5. CONCLUSION

Software defect prediction is the most important method
in the program development which need to be completed
with most concentration. In this work, linear twin core
expertise is implemented in order to deduct the defect
fastly with more accuracy. This linear twin score
methodology is based on the F-score feature choice
technique which is used to pick significant feature which

are helpful to foretell defects in program modules. There is
a significant difference in classifier performance which is

Developed using new feature subset as compared
to the classifier built on complete feature set. This
research discloses the effectiveness of proposed feature
selection based LSTSVM approach in predicting defective
software modules and suggests that the proposed model
can be useful in predicting software quality.

6. REFERENCES

1. B.W.Boehm and P.N.Papaccio (1988),
Understanding and controlling software costs’,
IEEE Tran, Software eng., vol. 14, pp. 1462-1477.

2. J.Zheng (2010), ’Cost-sensitive boosting neural
networks for software defect prediction’, Expert
Systems with Appl., vol.37, pp. 4537-4543.

3. L.C.Briand, K.E.Emam, et al (2000), ‘A
Comprehensive Evaluation of Capture-Recapture
Models for Estimating Software Defect Content’,
IEEE Transactions on Software Engineering, Vol.
26, pp.518-540.

4. Lourdes Pelayo and Scott Dick (2007), ‘Applying
Novel Resembling Strategies to Software Defect
Prediction,’ in proc.North Amr.Fuzzy Inf.
Processing Society, pp. 69 – 72.

5. Mingxia Liu, Linsong Miao et al (2014), ’Two-
Stage Cost-Sensitive Learning forSoftware Defect
Prediction’, IEEE Trans. Reliability, Vol. 63,
pp.679-684.

6. P. Runeson and C. Wohlin (1998), ‘An
Experimental Evaluation of an Experience-Based
Capture-Recapture Method in Software Code
Inspections’, Empirical Software Engineering., vol.
3, pp.381–406.

7. Q. Song, Z. Jia et al (2011), ‘A General Software
Defect- Proneness Prediction Framework’, IEEE
Transactions On Software Engineering, Vol. 37,
pp.356-370.

