
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 41

 DESIGN OF COMPACT IMPLEMENTATION OF SHA-3(512) ON FPGA

 M.M.Sravani1, C.H.Pallavi2

1 PG Student, Department of ECE, Siddharth Institute of Engineering & Technology, A.P., India
2 Assistant Professor, Department of ECE, Siddharth Institute of Engineering & Technology, A.P., India

---***---
Abstract - In this work we present a compact design

of newly selected Secure Hash Algorithm (SHA-3) on

Xilinx Field Programmable Gate Array (FPGA) device

Spartan 3E. The design is logically optimized for area

efficiency by merging Rho, Pi and Chi steps of algorithm

into single step. By logically merging these three steps

we save 16 % logical resources for overall

implementation. It in turn reduced latency and

enhanced maximum operating frequency of design. It

utilizes only 240 Slices and has frequency of 301.02

MHz’s Comparing the results of our design with the

previously reported FPGA implementations of SHA3-

512, our design shows the best throughput per slice

(TPS) ratio of 30.1.

Key Words: SHA3; Cryptography; FPGA; Xilinx;
Security etc….

1. INTRODUCTION
A cryptographic hash function is a deterministic process
whose input is arbitrary random block of data and
produces an output of fixed size, which is known as the
(Cryptographic) hash value. These functions were initially
introduced to provide specific security requirements and
integrity. Recent secure hash algorithms were found
Susceptible to attacks including MD5, RIPEMD, SHA-0,
SHA-1 and SHA-2 [1]. The long-term security of these
algorithms was uncertain, which led to requirement of
new cryptographic hash function. Therefore National
Institute of Standards and Technology (NIST) announced
Keccak algorithm as new secure hash algorithm (SHA-3) in
the year 2012 [2] and announced as Federal Information
Processing Standard Publication (FIPS PUB) 202 in April,
2014 [3].
FPGAs are ideal platform for the implementation of
cryptographic algorithms. Modern FPGAs are equipped
with enhanced embedded resources such as BRAMs and
Digital Signal Processing (DSP) blocks in addition to LUTs
and CLBs [4] that can be used to optimize the
implementations. Different implementations of secure
hash algorithm (SHA-3) on FPGA platform are reported in
open literature [5]. The previous work has been
categorized into low-area and high-speed
implementations. The main challenge was to implement
the design with most suitable available resources keeping
a balance between area and throughput constraints.
Different approaches have been adopted previously for

the implementation of SHA-3 depending whether it is for
low-area or high-speed designs. throughput compact FPGA
implementation of SHA-3 that offers maximum possible
throughput with better device utilization in terms of
TPS.The remaining paper is organized as follows. Section 2
describes the previous work related to implementation of
SHA-3 on FPGA and section 3 gives brief overview of SHA-
3 algorithm. In section 4 we present the compact
hardware implementation of SHA-3. we give the
implementation results of our work . At the end, we
provide conclusions related to our work in section 5.

2. PREVIOUS WORK
 A lot of earlier work related to FPGA implementations of
the SHA-3 has been reported since 2012. Most of these
implementations [6], [7], [8] are optimized for high
throughput and few are known about compact designs
[9]. In terms of area, the design in [6] has the lowest
hardware resources utilization. Many hardware designs
for FPGAs have been published during the SHA-3
competition. To the best of our knowledge, only three
generally different architecture types of the KECCAK
algorithm have been implemented and published in the
literature so far, while the KECCAK designers proposed
more possibilities to process the state in hardware. Most
design compute the compression function using a fully
parallel data path to reduce the number of clock cycles to a
minimum. These implementation focus on maximizing the
throughput, reaching up to 13 GBit/s. Variants of this
architecture type are pipelined or process more than one
data stream in parallel.

 For lightweight implementations, a lane-oriented
architecture is favored in most of the proposed designs,
The only alternatively implemented design strategy for
implementations of KE C C A K is a slice-oriented
architecture as proposed in , This implementation
strategy was also followed by the recent and more
extensive study in ..
For ASICs, there are also a lot of reported results.
Implementations of KE C C A K with the full and reduced
states. The area of the full KE C C A K-f [1600] was pushed

further to consume even less area.

3. KECCAK
3.1Basic Block Diagram Of Keccak
It is based on the sponge construction, so Keccak can be
considered as a family of sponge functions [10][11][12]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 42

The aims of using the sponge construction are to have a
provable security against generic attacks and to make the
use of compression function more simple, flexible, and
functional.

 Fig -1: Block Diagram Of KECCAK Algorithm.

In sponge construction model, there are two portions for
the internal stage registers. Also, there are two phases,
absorbed and squeezed.

 The input message will be XORed with the data stored in
the first portion of the internal stage registers during the
absorption stage. And then the resulted value of the
XORing process will be updated along with the data
stored in the second portion of the internal stage
register. During the squeezing phase, the data of the first
portion will be used as a part of the output. It is worth
mentioning that the sponge construction can
accommodate the output of any size by updating the
internal stage register.

3.2Keccak Parameters
Keccak is recognized as a new Secure Hash Algorithm-3
i.e. SHA-3 [3] announced by NIST. Gilles Van Assche,
Guido Bertoni, Michael Peeters and Joan Daemen
designed and proposed the construction of Keccak Hash
function. The Keccak-f permutation is the basic
component of Keccak Hash function and supports 224 -
bit, 256-bit, 384-bit and 512-bit hash variants. It consists
of number of rounds and each round is the combination
of logical operations and bit permutations. Keccak is
generated from sponge function with Keccak [r, c]
members. This means, it can be Parameterized by the
state size b, the rate r and the capacity c. The three
parameters are interdependent, i.e. b = c + r and thus,
changing one parameter changes at least one other
parameter. A forth important parameter is the size n of
the message digest. The parameters b and r determine
the performance of KE C C A K, whereas c and n are
important security parameters.

 The addition of r + c gives width of the Keccak function
permutation and is it is further limited to values as
indicated 25, 50, 100, 200, 400, 800, 1600. The Keccak
team introduced the Keccak [1600] function for SHA3
proposal with different values of ’r’ and ’c’. Keccak [1600]
was selected because of its increased number of rounds in
order to provide improved security margin. For 256-bit
hash value r = 1088 and c = 512. For 512-bit hash output,
the values of r and c are 576 and 1024 respectively. The
1600-bit state matrix of Keccak composed of 5x5
matrixes of 64-bit words. Initially, the message block
should undergo the inversion procedure so that last byte
should come first and first byte should become last.

 It variant with a reasonable amount of area on modern
FPGAs. However, several applications emphasis lowers
costs and thus area over throughput and security.
Therefore, the security requirements may be lowered for
these applications to achieve less implementation cost.
Therefore, we will also analyses variants of KE C C A K -f
[b]with b ∈ {200, 400, 800}. The variants still have
reasonable security for many applications.

 3.3. Security Parameters
 There are major security claims presented for sponge
construction and KECCAK [13][14], which can be used
to derive meaningful parameter sets. The most
interesting security properties of hash functions are the
collisions, the preimage and the second pre image
resistance. The exact claimed security bounds in terms of
hash digest length n and capacity c are:

– Collision resistance: O(min(2
n/2 , 2

c/2))

– Preimage resistance: O(min(2n , 2
c/2))

– Second preimage resistance: O(min(2n , 2
c/2))

 Note, that the security assumed for the preimage
resistance is claimed to be higher by some publications,
because no generic attack is known which is as good as
the theoretical bound, The Security parameters used in
the present evaluation are partially derived from the
Photon specifica­tion adapted to KE CC A K, with the
exception of the smallest Photon variant.

 Additionally higher security versions are evaluated for
the message digest sizes, where the state size allows a
theoretically optimal reimage resistance. All evaluated
parameters are presented in Table 1. Using the same
Photon parameter sets has the main advantage that it is
easy to replace one hash function with the other and it
will be easier to compare the performance of both
algorithms. Similar, but slightly different parameters are
used by the Sponging hash function. For the ASIC designs,
only a subset of these options is investigated for now,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 43

because of the long time needed to evaluate all
possibilities.

3.4Operation of Keccak Hash Function
The operation of Keccak hash function comprised of three
different stages i.e. first initialization followed by
absorbing and finally squeezing stage as shown in Fig. 1,
where M is the message and Z is the hash output. During
initialization phase, every single bit of state matrix ’A’ is
initialized with zero.

In 2nd stage i.e absorbing stage, all r-bit wide block of

messages is XORed with recent matrix state, in this way 24

rounds of Keccak permutation are accomplished

sequentially. When absorbs every block of initial message

taken as input block comes in that sequence.

Fig-2: The Sponge Function

Finally, in squeezing stage, matrix state is basically
truncated to attainable length of output hash and extra
bits are removed from current state matrix to achieve
desired hash length. If hash value is required more
than r-bit (bit-rate), then additional Keccak
permutations are actively achieved and further their
results are awaited until hash width attains its desired
length.

3.5 Single Compression Box
 Every single compression function of Keccak
composed of 24 rounds and each round is sub-divided
into five steps i.e. Theta (Θ), Rho (ρ) and Pi (π), Chi (χ),
Iota (i) explained in below section.

a. Theta (Θ) Step

Theta function comprises of three equations that involves
simple XOR and bitwise cyclic shift operations. Equation
(1) involves the XOR operation between lanes (set
composed of 64-bits along the constant x and y co-
ordinates) of each row of the state matrix A that results in
five output lanes.

C[X] = A[X,0] ⊕ A[X,1] ⊕ A[X,2] ⊕ A[X,3]
 ⊕ A[X,4] 0 ≤ X ≤ 4 (1)

Initially left circular shift will be applied on the five output
lanes in such a way that last lane becomes first and second
last lane becomes last lane in (2). After that right circular
shift will be carried out on the lanes so that first lane
becomes the last and second lane becomes the first lane
and then left circular shift will be applied on each lane in
order to change the positions of the bits within each lane

D[X] = C[X - 1] ⊕ ROT(C[X + 1,1]) 0 ≤ X ≤ 4 (2)

Equation (3) of Theta just involves XORing between the

input state matrix and output lanes obtained from (2).

A[X, Y] ' = A[X, Y] ⊕ D[X] 0 ≤ X, Y ≤ 4 (3)

b. Rho (ρ) and Pi (π) Step

 The next two steps Rho (ρ) and Pi (π) can be expressed
jointly by (4) that compute an auxiliary 5 x 5 array B from
the state array ’A’. The operation of Rho (ρ) and Pi (π) take
each of the 25 lanes of the state array ’A’, perform circular
rotation on it by the fixed number of values depending
upon the ’x’ and ’y’ co-ordinates i.e r[x, y] given in Table I
[3] (called Rho (ρ) step) and then place the above rotated
lanes at the different location in the new array B (called Pi
(π) step). Note that all the indices are taken modulo 5.

Table-1: The Cyclic Shift Offsets “R(X,Y) for Keccak

B[Y,2X + 3Y] = ROT(A[X, Y], r[X, Y]) 0 ≤ X, Y ≤ 4 (4)

c. Chi (χ) Step

The Chi (χ) step operates on the lanes, i.e. words with
64-bits and manipulates the B array obtained in the
previous Rho (ρ) and Pi (π) step and replaces the result in
the state array A. We can say that the Chi (χ) step takes the
lane at location [x,y] and XOR it with the logical AND of the
lane at address location of [x+1,y] and the complement at
location [x+2,y]. Following equation is illustrating the
function Chi (χ).

A[X,Y] = B[X,Y] ⊕ ((NOT B[X +1, Y])
AND B[X + 2, Y]) 0 ≤ X, Y ≤ 4 (5)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 44

d. Iota(i)step

The Iota step is the simplest step of Keccak algorithm.
just performs the XOR operation of predefined 64-bit
constant RC given in [3] with the lane at location [0,0] of
the new state matrix ’A’.

A[0,0] = A[0,0] ⊕ RC (6)

4. IMPLEMENTATION
In this work, we present an iterative design of SHA-3 512-
bit for compact implementation as shown in Fig. 2. The
architecture has 128-bit input data just to save extra input
bits. The next block in proposed design is padder block
which pads the required number of zeros with the input
data in order to form 1600-bit state and then inversion is
applied on each byte. The output from the padder block is
forwarded to 2 x 1 Multiplexer (MUX) which drives the
output data from padder to the compression-box of the
architecture and selects the input data for the first round
and feedback data for other twenty three rounds of Keccak
with the help of controlling signal (Ctrl 1).

When Ctrl 1 is low, MUX select the input data and at high,
MUX will select the feedback data. First padded message is
directly copied to Reg A which previously initialized with
all zeroes and resulting bits are forward to Compression-
Box (C-Box). It is basically the implementation of
compression function in SHA-3 algorithm which
comprises of theta (Θ), rho (ρ), pi (π), chi (χ) and iota (i)
step. For performance, we logically optimized our design
by implementing rho (ρ), pi (π) and chi (χ) steps as a
single step. This results in saving of hardware resources in
term of 48 slices. After completing 24 iterations, final
output is forwarded to Reg B for storage in order to
synchronize the data-path. The last component in the
architecture is Truncating component where inversion per
byte is performed on the output bits and then truncated to
the desired length of hash output.

4.1Implementation Of Compression-Box
The details of the implementation for each step are given
as follow:
a) Theta Step (Θ): Theta step consists of three main steps
in terms of equations that mainly require bitwise XOR
operation.quation (1) involves bitwise XOR operation
between the 64-bit lanes of each row where every lane of
each row is independent of each other so parallel
operations can be applied on these lanes. We have used
conventional 64-bit XOR operator in parallel to perform
XORing between the five lanes in each row of the state
array ’A’ and results are stored in intermediate registers.
The above parallel XOR operations make our design fast
and more efficient in terms of performance. Second step
(2) of step theta involves one bit left circular rotation
which is accompanied by simple rewiring or replacing the

bit pattern of each row, then XORed with the previous
output lanes. The results are stored in an intermediate
registers in the form of five lanes. These lanes are again
XORed with input state matrix A[x, y] to form new 5 x 5
state matrix A’[x,y]. All the operations are done on modulo
5.

Fig -3:128-bit Keccak sequential architecture

b)Integrated Rho (ρ), Pi (π) and Chi (χ) Step: The rho
and pi are basically permutations and each lane require

cyclic shift by some fixed numbers according to the value
of cyclic shift offset given in SHA-3 FIPS PUB 202. If this
step is implemented separately, we would need extra 48

slices for the operation of rho and pi step. In order to save
these slices we have logically optimized our design by

merging the rho and pi step into the chi step. We have
performed all the calculations required in rho and pi step
manually and applied cyclic shift

on each lane of state matrix obtained at the output of theta
step and relocated them after calculating its new position
according to (4). For example, for X=1, and Y=2, (4) can be
written as 1)

B[2,2(1) + 3(2)] = ROT(A[1,2] , r[1,2]) (7)

The value of r(1,2) is 10 according to cyclic shift offset
table in FIPS PUB 202 and all the operations are done
modulo 5, therefore (7) is transformed into (8).\

B[2,3] = ROT(A[1,2] ,10) (8)

In this way, we have performed calculations for all the
possible combinations of the state matrix and placed these

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 45

values directly in (5) of chi step. For X=1 and Y=3, (5) can
be represented as follows shown by (9).

A[1,3] = B[1,3] ⊕ ((NOT B[2,3]) AND B[3,3]) (9)

Putting the values of B[1, 3], B[2, 3] and B[3, 3] in (9).

A[1,3] = ROT(A[0,1] ,36) ⊕ ((NOT ROT(A[1,2] ,10))

 AND ROT(A[2,3] ,15)) (10)

We have performed all the cyclic rotations manually and
placed the results in (10) and then XOR, NOT and AND

The above logical optimization technique allow us to
minimize the resources by 16 % that results in enhanced
performance of our design. The diagrammatic view of
integrated Rho, Pi and Chi step is shown in Fig. 3. It shows
the implementation of integrated rho, pi and chi step, it
can be easily seen that Rho and Pi permutations are
applied directly during the implementation of Chi step by
simple re-wiring.

Fig-4: Integrated Rho, Pi and Chi

c) Iota (i): In Iota (i) step, we have used conventional 64
bit XOR operator to perform XORing between the least
significant 64-bits of state array and round constant RC.
The values of round constant are fixed and different for
every round. These round constants are stored in
registers.

5. CONCLUSION
In this work we have presented the design for compact
hardware implementation of SHA3-512. We tried to keep
balance tradeoff between area and throughput where our
design presents best possible results both in term of area
and throughput as compared to previous reported results.
Our logical optimization by merging the three transforms
i.e. rho, pi and chi in to single transform and by exploring
maximum parallelism in the algorithm are contributing
factor. This optimization results in overall reduced latency
which significantly enhanced the system performance.

REFERENCES

[1] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for hash

functions md4, md5, haval-128 and ripemd,” IACR,

August 2004.
[2] National Institute of Standards and Technology (nist),

“Cryptographic hash algorithm competition,” 2007.
[3] FIPS-202, “Federal information processing standards

publication fips-202, secure hash algorithm-3 (sha-

3),” 2014.
[4] Xilinx, “Virtex 2.5 V field programmable gate arrays”.
[5] F.R. Henrquez, A.D. Prez, N.A. Saqib, and C.K. Koc,

Cryptographic Algorithms on Reconfigurable
Hardware. Signals and Communication Technology,
Springer, 2007.

[6] S. Kerckhof, F. Durvaux, N.V. Charvillon, F. Regazzoni,
G.M. de Dormale, and F.X. Standaert, “compact fpga
implementations of the five sha-3 finalists,” Springer
Berlin Heidelberg, vol. 7079, pp. 217–233, 2011.

[7] A. Akin, A. Aysu, O.C. Ulusel, E. Savas, “Efficient
hardware implementations of high throughput sha-3
candidates keccak, luffa and blue mid night wish for
single- and multi-message hashing,” ACM, pp. 168–
177, 2010.

[8] K. Gaj, E. Homsirikamol, and M. Rogawski,
“Comprehensive comparison of hardware
performance of fourteen round 2 sha-3 candidates
with 512-bit outputs using field programmable gate
arrays,” 2nd SHA-3 Candidate Conference, pp 23-24,
August 2010.

[9] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M.
ONeill, and W.P. Marnane, “FPGA implementations of
the round two sha-3 candidates,” The second SHA-3
Candidate Conference, 2010.

[10] G. Provelengios, P. Kitsos, N. Sklavos, and C. Koulamas,
“FPGA-based design approaches of keccak hash
function,” 15th Euromicro Conference, pp. 648–653,
2012.

[11] K. Latif, M.M. Rao, A. Aziz, and A. Mahboob, “efficient
hardware implementations and hardware
performance evaluation of sha-3 finalists,” in
Proceeding of 3rd SHA-3 Candidate Conference, march
2012.

[12] E. Homsirikamol, M. Rogawski, and K. Gay, “comparing

hardware performance of round 3 sha-3 candidates

using multiple hardware

[13] architectures in xilinx and altera fpgas,” ECRYPT II

Hash Workshop, pp. 1–15, 19-20 May 2011.

[14] Bertoni, G.,Daemen, J.,Peeters, M.,Assche, G.V.: The

Keccak Reference.Online Publication(2011).

[15] Bertoni, G,. Daemen, J., Peeters , M.,van Assche,

G,:Cryptographic Sponge functions.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 02 | May-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 46

BIOGRAPHIES

 M.M.Sravani was born in Chittoor,
Ap,India She has obtained her B Tech
degree in Electronics and Communication
from Audisankara College Of Engineering
in 2012. Presently she is pursuing her
Masters degree in VLSI System Design of
Electronics and Communication in
Siddharth Institute of Engineering &
Technology, Puttur, from 2013 to 2015.
She is interested in Cryptography in VLSI.
she is currently working on a project
titled “Compact Implementation Of SHA3-
512 on FPGA” as a partial fulfillment of
his M.Tech degree.

C H Pallavi was born at Chittoor, AP, and
India. She completed her B.Tech degree
from Srikalahsti Institute Of Engineering,
Srikalahasti, Ap, India in 2009, and
M.Tech in 2013 from the JNTUA
University in VLSI System Design as
specialization He is currently working as
a Assistant Professor in Department of
ECE in Siddharth Institute of Engineering
& Technology, Puttur, AP, India. Her
research interest includes Low power
design, VLSI design, and embedded
design. She has been published several
papers in different various conferences.

