
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 01 | Apr-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 265

EFFICIENT APPROACH FOR DETECTING HARD KEYWORD QUERIES

WITH MULTI-LEVEL NOISE GENERATION

B.Mohankumar1, Dr. P. Marikkannu2, S. Jansi Rani3, S. Suganya4

1 3 4Asst Prof, Department of Information Technology, Sri Ramakrishna Engineering College, Coimbatore, India
2 Head of the Dept, Department of Information Technology, Anna University, Regional Centre, Coimbatore, India

---***---
Abstract - Keyword queries on databases provide
easy access to data, but often suffer from low ranking
quality, i.e., low precision and/or recall, as shown in
recent benchmarks. It would be useful to identify
queries that are likely to have low ranking quality to
improve the user satisfaction. For instance, the system
may suggest to the user alternative queries for such
hard queries. In the existing work, analyzes the
characteristics of hard queries and propose a novel
framework to measure the degree of difficulty for a
keyword query over a database, considering both the
structure and the content of the database and the query
results. However, in this system numbers of issues are
there to address. They are, searching quality is lower
than the other system and reliability rate of the system
is lowest. In order to overcome these drawbacks, to
perform the noise generation in three levels includes
attribute level, attribute value level and entity set level
in the database. This proposed system is well enhancing
the reliability rate of the difficult query prediction
system. In other words, this work is support these
operators for efficient result. From the experimentation
result, the proposed system is well effective than the
existing system in terms of accuracy rate, quality of
result

Key Words: Query Optimization, Query Performance

and Keyword Query

1. INTRODUCTION

Keyword query interfaces (KQIs) for databases
have attracted much attention in the last decade due to
their flexibility and ease of use in searching and exploring
the data. Since any entity in a data set that contains the
query keywords is a potential answer, keyword queries
typically have many possible answers. KQIs must identify
the information needs behind keyword queries and rank
the answers so that the desired answers appear at the top
of the list. Unless otherwise noted, it refers to keyword
query as query in the remainder of this project.

Databases contain entities, and entities contain
attributes that take attribute values. Some of the
difficulties of answering a query are as follows: First,

unlike queries in languages like SQL, users do not
normally specify the desired schema element(s) for each
query term. For instance, query Q1: Godfather on the IMDB
database (http://www.imdb.com) does not specify if the
user is interested in movies whose title is Godfather or
movies distributed by the Godfather Company. Thus, a KQI
must find the desired attributes associated with each term
in the query. Second, the schema of the output is not
specified, i.e., users do not give enough information to
single out exactly their desired entities. For example, Q1
may return movies or actors or producers.

It is important for a KQI to recognize such queries
and warn the user or employ alternative techniques like
query reformulation or query suggestions. It may also use
techniques such as query results diversification. To the
best of our knowledge, there has not been any work on
predicting or analyzing the difficulties of queries over
databases. Researchers have proposed some methods to
detect difficult queries over plain text document
collections. However, these techniques are not applicable
to our problem since they ignore the structure of the
database. In particular, as mentioned earlier, a KQI must
assign each query term to a schema element(s) in the
database. It must also distinguish the desired result
type(s).

1.1 Properties of Hard Keyword Query

The queries which are difficult to answer correctly are
called hard keyword queries. The properties of hard
keyword query are:
Less Specificity : If more entities match the terms in a
query, the query is less specific and it is harder to answer
properly.
Higher Attribute Level Ambiguity : Each attribute
explains a different feature of an entity and defines the
context of terms in attribute values of it. If a query
matches different attributes in its candidate answers, it
will have a more diverse set of potential answers in
database, and hence it has higher attribute level ambiguity
Higher Entity set level Ambiguity : Each entity set
contains the information about a different type of entities
and defines another level of context (in addition to the
context defined by attributes) for terms. Hence, if a query

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 01 | Apr-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 266

matches entities from more entity sets, it will have higher
entity set level ambiguity

2. RELATED WORKS

Prediction of query performance has long been of interest
in information retrieval. It is invested under a different
names query difficulty, query ambiguity and sometimes
hard query.

Keyword Searching and Browsing in Databases using
BANKS [4] describe techniques for keyword searching and
browsing on databases that we have developed as part of
the BANKS system (BANKS is an acronym for Browsing
ANd Keyword Searching). The BANKS system enables data
and schema browsing together with keyword-based
search for relational databases. BANKS enables a user to
get information by typing a few keywords, following
hyperlinks, and interacting with controls on the displayed
results; absolutely no query language or programming is
required. The greatest value of BANKS lies in near zero-
effort web publishing of relational data which would
otherwise remain invisible to the web. BANKS may be
used to publish organizational data, bibliographic data,
and electronic catalogs. Search facilities for such
applications can be hand crafted: many web sites provide
forms to carry out limited types of queries on their
backend databases. For example, a university web site
may provide form interface to search for faculty and
students. Searching for departments would require yet
another form, as would search for courses offered.
Creating an interface for each such task is laborious, and is
also confusing to users since they must first expend effort
finding which form to use

Efficient IR-Style Keyword Search over Relational
Databases [2] A key contribution of this work is the
incorporation of IR-style relevance ranking of tuple trees
into our query processing framework. In particular, our
scheme fully exploits single-attribute relevance-ranking
results if the RDBMS of choice has text-indexing
capabilities (e.g., as is the case for Oracle 9.1, as discussed
above). By leveraging state-of-the-art IR relevance-
ranking functionality already present in modern RDBMSs,
we are able to produce high quality results for free-form
keyword queries. For example, a query [disk crash on a
net vista] would still match the comments attribute of the
first Complaints tuple above with a high relevance score,
after word stemming (so that “crash” matches “crashed”)
and stop-word elimination (so that the absence of “a” is
not weighed too highly).
This scheme relies on the IR engines of RDBMSs to
perform such relevance-ranking at the attribute level, and
handles both AND and OR semantics. Unfortunately,
existing query-processing strategies for keyword search
over RDBMSs are inherently inefficient, since they attempt
to capture all tuple trees with all query keywords. Thus
these strategies do not exploit a crucial characteristic of

IR-style keyword search, namely that only the top 10 or 20
most relevant matches for a keyword query –according to
some definition of “relevance”– are generally of interest.
The second contribution of this paper is the presentation
of efficient query processing techniques for our IR-style
queries over RDBMSs that heavily exploit this observation.
As we will see, our techniques produce the top-k matches
for a query –for moderate values of k– in a fraction of the
time taken by state-of-the-art strategies to compute all
query matches. Furthermore, our techniques are pipelined,
in the sense that execution can efficiently resume to
compute the “next-k” matches if the user so desires.

Predicting Query Performance via Classification [6] Here
introduce new models and representations for estimating
two important measures of query performance: query
difficulty and expansion risk. This work brings together
features from previous studies on query difficulty based
on divergences between language models of the query,
collection and initial results. Here extend this to include a
model of expansion results from the expanded query. With
these models and features, here compare the performance
of two model representations: a low-dimensional pre
computed topic representation and a much larger unigram
language model over two standard Web collections. Here
also develop a simple, effective method for deriving a topic
representation, modeled as a distribution over ODP
categories, of a query by estimating and combining pre-
computed topic representations from the individual query
terms. Here investigate using topic prediction data, as a
summary of document content, to compute measures of
search result quality. Unlike existing quality measures
such as query clarity that require the entire content of the
top-ranked results, class-based statistics can be computed
efficiently online, because class information is compact
enough to pre compute and store in the index. In an
empirical study we compare the performance of class-
based statistics to their language-model counterparts for
two performance-related tasks: predicting query difficulty
and expansion risk. Here findings suggest that using class
predictions can offer comparable performance to full
language models while reducing computation overhead.

3. PREDICTION FRAMEWORK

3.1 Noise Generation in Databases

In order to compute SR, we need to define the
noise generation model fXDB (M) for database DB. It will
show that each attribute value is corrupted by a
combination of three corruption levels: on the value itself, its
attribute and its entity set. Now the details: Since the
ranking methods for queries over structured data do not
generally consider the terms in V that do not belong to
query Q, we consider their frequencies to be the same
across the original and noisy versions of DB. The
corruption model must reflect the challenges about search
on structured data, where we showed that it is important

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 01 | Apr-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 267

to capture the statistical properties of the query keywords
in the attribute values, attributes and entity sets. We must
introduce content noise (recall that we do not corrupt the
attributes or entity sets but only the values of attribute
values) to the attributes and entity sets, which will
propagate down to the attribute values. For instance, if an
attribute value of attribute title contains keyword
Godfather, then Godfather may appear in any attribute
value of attribute title in a corrupted database instance.
Similarly, if Godfather appears in an attribute value of
entity set movie, then Godfather may appear in any
attribute value of entity set movie in a corrupted instance.

3.2 Ranking in Original & Corrupted Database
With the mapping probabilities estimated as

described above, the probabilistic retrieval model for
semi-structured data (PRMS) can use them as weights for
combining the score from each element into a document
score, as follows:

Here, the mapping probability PM(Ej|w) is

calculated and the element-level query-likelihood score
PQL(w|ej) is estimated in the same way as in the HLM
approach.

The rationale behind this weighting is that the

mapping probability is the result of the inference
procedure to decide which element the user may have
meant for a given query term.

3.3 Structured Robustness Algorithm

This compute the similarity of the answer lists
using Spearman rank correlation. It ranges between 1 and
−1, where 1, −1, and 0 indicate perfect positive correlation,
perfect negative correlation, and almost no correlation,
respectively. To computes the Structured Robustness
score (SR score), for query Q over database DB given
retrieval function

g: SR(Q, g,DB,XDB) = E{Sim(L(Q, g,DB), L(Q, g,XDB))}

where Sim denotes the Spearman rank correlation
between the ranked answer lists.

Algorithm1 CorruptTopResults(Q,L,M,I,N)
Input: Query Q, Top-K result list L of Q by ranking function g,
Metadata M, Inverted indexes I, Number of corrupted iteration N.
Output: S R score for Q.
1: S R ← 0; C ← { }; // C caches λT, λS for keywords in Q
2: FOR i=1 → N DO
3: I′ ← I; M′ ← M; L′ ← L; // Corrupted copy of I, M and L
4: FOR each result R in L DO

5: FOR each attribute value A in R DO
6: A′ ← A; // Corrupted versions of A
7: FOR each keywords w in Q DO
8: Compute # of w in A′ by Equation 10; // If λT,w λS,w needed but
not in C, calculate and cache them
9: IF # of w varies in A′ and A THEN
10: Update A′, M′ and entry of w in I′;
11: Add A′ to R′;
12: Add R′ to L′;
13: Rank L′ using g, which returns L, based on I′, M′;
14: S R += Sim(L,L′); // Sim computes Spearman correlation
15: RETURN S R ← S R / N; // AVG score over N rounds

Algorithm 3.3: Structured Robustness Algorithm

Algorithm 3.3 shows the Structured Robustness

Algorithm (SR Algorithm), which computes the exact SR
score based on the top K result entities. Each ranking
algorithm uses some statistics about query terms or
attributes values over the whole content of DB. Some
examples of such statistics are the number of occurrences
of a query term in all attributes values of the DB or total
number of attribute values in each attribute and entity set.
These global statistics are stored in M (metadata) and I
(inverted indexes) in the SR Algorithm pseudocode. SR
Algorithm generates the noise in the DB on-the-fly during
query processing. Since it corrupts only the top K entities,
which are anyways returned by the ranking module, it
does not perform any extra I/O access to the DB, except to
lookup some statistics.

3.4 Approximation Algorithms

In this section, this paper proposes approximation
algorithms to improve the efficiency of SR Algorithm. Our
methods are independent of the underlying ranking
algorithm.
Query-specific Attribute values Only Approximation (QAO-
Approx): QAO-Approx corrupts only the attribute values
that match at least one query term.
Observation 1: The noise in the attribute values that
contain query terms dominates the corruption effect.
Observation 2: The number of attribute values that contain
at least one query term is much smaller than the numbers of
all attribute values in each entity.
Static Global Stats Approximation (SGS-Approx): SGS
Approx uses the following observation:
Observation 3: Given that only the top-K result entities are
corrupted, the global DB statistics do not change much.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 01 | Apr-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 268

Query

Original
database

Corrupted
database

Noise
Generatio

n in
Database

s

PRMS ranking

Spearman rank correlation

SR score
Approximation

algorithm

Performance evaluation

Quality
Results

4. ARCHITECTURE

Fig -1: Work Flow Architecture
Form the fig 1, It shows the complete work flow of the
proposed system and illustrate that how the system
artichecture has been created for detecting the hard
queries with multi-level noise generation and produes the
quality result for the given query.

 5. EXPERIMENTS AND RESULTS

Fig 2 Comparison between Attribute onlyand Attribute
set + Attribute + Entity setmethod

From the fig 2, It shows the comparison between
the Attribute onlyand Attribute set + Attribute value +
Entity set method where N is the number of iterations. In

the Attribute only method, the SR score value is based on
attribute set but in Attribute set + Attribute value + Entity
set method, the SR score value is based on attribute value,
attribute set and entity set. As number of iteration
increases the SR score value decreases in Attribute only
method but in Attribute set + Attribute value + Entity set
method the SR score value linearly increases.
The comparison can be calculated as follows:
Comparison = Average of number of occurrences in SR score

 Number of iterations

Table 1 Comparison between Attribute only and
Attribute set + Attribute + Entity set method
Method Iteration

1
Iteration

2
Iteration

3
Comparison

in %

Attribute
only

12 44 22 26 %

Attribute
set +

Attribute
value +
Entity

set

30 75 98 64 %

From table 1, it shows that in Attribute only
method the accuracy rate is 26% whereas in Attribute set
+ Attribute value + Entity set method the accuracy rate
increased to 64%.

5. CONCLUSION

We introduced the novel problem of predicting
the effectiveness of keyword queries over DBs. We showed
that the current prediction methods for queries over
unstructured data sources cannot be effectively used to
solve this problem. We set forth a principled framework
and proposed novel algorithms to measure the degree of
the difficulty of a query over a DB, using the ranking
robustness principle. Based on our framework, we
propose novel algorithms that efficiently predict the
effectiveness of a keyword query. Our extensive
experiments show that the algorithms predict the
difficulty of a query with relatively low errors and
negligible time overheads.

REFERENCES

1. Shiwen Cheng, Arash Termehchy and Vagelis Hristidis

(2014), ‘Efficient Prediction of Difficult Keyword
Queries over Databases’, IEEE Transactions on
Knowledge and Data Engineering, Vol. 26, no. 6, pp.
1507-1520.

2. Hristidis V., Gravano L. and Papakonstantinou Y.

(2003), ‘Efficient IR-style Keyword Search over
Relational Databases’, in Proc. 29th VLDB Conf., Berlin,
Germany, pp. 850–861.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 01 | Apr-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 269

3. Ganti V., He Y. and Xin D. (2010), ‘Keyword++: A

Framework to Improve Keyword Search over Entity
Databases’, in Proc. VLDB Endowment, Singapore, Vol.
3, no. 1–2, pp. 711–722.

4. Bhalotia G., Hulgeri A., Nakhe C., Chakrabarti S. and

Sudarshan S. (2002), ‘Keyword Searching and
Browsing in Databases using BANKS’, in Proc. 18th
ICDE, San Jose, CA, USA, pp. 431–440.

5. Zhou Y. and Croft B. (2006), ‘Ranking Robustness: A

Novel Framework to Predict Query Performance’, in
Proc. 15th ACM Int. CIKM, Geneva, Switzerland, pp.
567–574.

6. Collins-Thompson K. and Bennett P.N. (2010),
‘Predicting Query Performance via Classification’, in
Proc. 32nd ECIR, Milton Keynes, U.K., pp. 140–152.

7. Shtok A., Kurland O. and Carmel D. (2009), ‘Predicting
Query Performance by Query-Qrift Estimation’, in
Proc. 2nd ICTIR, Heidelberg, Germany, pp. 305–
312.

8. Zhao Y., Scholer F. and Tsegay Y. (2008), ‘Effective

Pre-retrieval Query Performance Prediction using
Similarity and Variability Evidence’, in Proc. 30th
ECIR, Berlin, Germany, pp. 52–64.

9. Hauff C., Murdock V. and Baeza-Yates R. (2008),

‘Improved Query Difficulty Prediction for the Web’, in
Proc. 17th CIKM, Napa Valley, CA, USA, pp. 439–448.

10. Hauff C., Azzopardi L., Hiemstra D. and Jong F. (2010),

‘Query Performance Prediction: Evaluation Contrasted
with Effectiveness’, in Proc. 32nd ECIR, Milton Keynes,
U.K., 2010, pp. 204–216.

