
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 01 | March-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 55

LOW POWER AND TEST DATA COMPRESSION IN VLSI TESTING USING

NEW ENCODING SCHEME

V.Govindaraj1, B.Jaishankar2, S.Balamurali3, P.Balamurugan4
1 2 3Assistant Professor, ECE, KPR Institute of Engineering and Technology , Tamilnadu, India

4 Associate Professor, ECE, KSR College of Engineering , Tamilnadu, India

---***---
Abstract -Power dissipation during test is a significant

problem as the size and complexity of systems-on-chip

(SOCs) continue to grow. During scan shifting, more

transitions occur in the flip-flops compared to what occurs

during normal functional operation. This problem is further

compounded when pseudorandom filling of the unassigned

input values is employed. Excessive power dissipation during

test can increase manufacturing costs by requiring the use

of a more expensive chip packaging or causing unnecessary

yield loss. In this project, a new test-data-compression

scheme based on linear feedback shift register (LFSR)

reseeding that significantly reduces power consumption

during test is proposed. Test-data volume has also increased

dramatically as the size and the complexity of chips grow. A

large number of test pattern bits being assigned randomly

cause a large number of transitions in the scan chains

thereby increasing power dissipation during test drastically.

To overcome this a new encoding algorithm is Proposed to

achieve test data compression and low power dissipation.

Keywords –power dissipation, test data

compression,vlsi,LFSR.

1. INTRODUCTION

 As the size and complexity of systems-on-a-chips
(SOCs) continue to grow, the cost of VLSI test is increasing
drastically. Larger chips require a larger amount of test
data and dissipate a larger amount of power during test.
Moreover, they are typically harder to test because they
tend to have more hard-to-detect faults. Test time is a
critical part of test cost and increases as the size and
complexity of a chip increase. Reducing test cost is
becoming an increasingly critical issue. This dissertation
focuses on two important sources of the test cost, namely
test data volume and test power. Test time depends on
both test data volume and test power. Large test data
volume increases test time because it requires more time
to transfer the data to and from the chip.
 Test power can slow down test speed, thereby
increasing test time. If the average power Consumption
during test is higher than the chip package’s capability to

dissipate heat; the test must be run at a lower frequency.
Therefore, both test power and test data should be
considered to reduce test time effectively. Conventional
test data compression schemes generally dissipate high
power. Most conventional compression schemes exploit
the fact that a test set has a large number of don’t cares
and only 1~5% of specified (care) bits. The don’t cares are
assigned to maximize compression. In this process, a large
number of transitions may occur in test patterns. The
larger the number of transitions in the test patterns, the
larger the power dissipation. This dissertation addresses
these two important problems in the VLSI testing area,
namely test data volume and test power.

1.1 TEST POWER VS. TEST DATA

Conventional test data compression schemes
generally increase test power. Most conventional test data
compression techniques are based on the fact that a large
percentage of test set, typically 90%~95%, is filled with
don’t care bits. The don’t care bits are assigned in a way
that minimizes test data volume and not test power. To
reduce the number of transitions in a chip during test, the
don’t care bits should be set to constant values.

Then, test power dissipation will be minimized,

but the don’t care bits would not be used for test data
compression. On the other hand, if the don’t care bits are
used for test data compression, then the don’t care bits
cannot be used for test power reduction. For example, in
linear feedback shift register (LFSR) reseeding scheme
that is used in several commercial tools including
TestKompress by Mentor Graphics and DBIST by
Synopsys, the don’t care bits are assigned almost
randomly, which results in large power dissipation. This is
why test power can be a serious problem in test data
compression techniques

1.2 LFSR RESEEDING

The basic idea in LFSR reseeding is to generate
deterministic test cubes by expanding seeds. A seed is an
initial state of the LFSR that is expanded by running the
LFSR in autonomous mode. Since typically only 1-5% of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 01 | March-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 56

the bits in a test vector are specified, most bits in a test
cube do not need to be considered when a seed is
computed because they are don’t care bits. Therefore, the
size of a seed is much smaller than the size of a test vector.
Consequently, reseeding can significantly reduce test data
storage and bandwidth [12]. Many test data compression
schemes are based on LFSR reseeding. Causing high power
dissipation. We present a new encoding scheme that can
be used in Conjunction with any LFSR reseeding scheme to
significantly reduce test power and even further reduce
test storage.

2. PROPOSED METHODOLOGY

Fig 1. Basic Block Diagram

The proposed encoding scheme acts as a second
stage of compression after LFSR reseeding. It
accomplishes two goals. First, it reduces the number of
transitions in the scan chains (by filling the unspecified
bits in a different manner), and second it reduces the
number of specified bits that need to be generated via
LFSR reseeding. Experimental results indicate that the
proposed method significantly reduces test power and in
most cases provides greater test data compression than
LFSR reseeding alone.

2.1. ENCODING ALGORITHM

Let a transition in a test cube be defined as a

specified 0 (1) followed by zero or more X’s followed by a
specified 1 (0). The key idea of the proposed encoding
algorithm is to take advantage of the fact that number of
transitions in a test cube is always less than the number of
specified bits in a test cube. Thus, rather than using LFSR
reseeding to directly encode the specified bits as in
conventional LFSR reseeding, the proposed encoding
algorithm divides the test cube into blocks and only uses
LFSR reseeding to produce the blocks that contain
transitions. For the blocks that do not contain transitions,
the logic value fed into the scan chain is simply held
constant.

This approach reduces the number of transitions in the
scan chains and in most cases also reduces the total
number of specified bits that must be generated by the
LFSR as compared with conventional LFSR reseeding

2.2 Basic Concept

The proposed encoding scheme encodes each test cube

with two kinds of data: hold flags and data bits. Each test
cube is divided into several blocks and each block has a
one-bit hold flag. The hold flag indicates whether a
transition occurs in a block.

There are three types of blocks:

1) Transition block (Hold flag = 0)

 One or more transitions exist in the block. Either
both 0 and 1 are present in the block (e.g., XX1X0X), or
only 0 or 1 is present but the last specified bit from a
previous block was opposite.
2) Non-transition block (Hold flag = 1)

 No transition occurs in current block. Only 0 or 1
is present in the block, and the last specified bit from a
previous block is same (e.g., X0XX0X).

Table 1. Example of encoding test data
3)Don’t care block (Hold flag = X)

No specified bits occur in the block, all are don’t

cares. If the hold flag for a block is 1, then the data bits in
the block are simply held constant from the last data bit in
the previous block. If the hold flag is 0, then the data bits
are loaded directly from the LFSR. If the hold flag is X, then
it can be either treated as a non-transition block or as a
transition block with all X data. Both the hold flags and the
data bits are generated from a single LFSR using
reseeding.

 An example of the proposed encoding is shown in
Table 1. The test sequence in the example is composed of 4
blocks and each block has 1 hold flag and 4 data bits. The
hold flags are shown in bold in the “Encoded” bit sequence
row. The original test cube contains 7 specified bits.
However, using the proposed encoding scheme, the
encoded data has only 3 specified hold flags and 2
specified data bits giving a total of only 5 specified bits.

 BLOCK BLOCK BLOCK BLOCK

original 0 X X
1

 X 1 1
1

1 X 1 X X X X X

encoded 0 0 X X
1

1 X 1 1
1

11X1 X X X X XX

Pseudo

Random

Pattern

Generator

Hold

Flag

Shift

Regis

ter

CUT

Scan

chain

Response

analyzer

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 01 | March-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 57

 BLOCK

BLOCK

BLOCK

BLOCK

Original

X 0 1 X X 0 X
0

 X X X X 1 1 1
X

Encoded

0 X 0 1
X

1 X 0 X
0

0 XX X 1 1 1 1 1
X

Table 2. Example of encoding test data

Thus, the proposed encoding scheme reduces the
number of specified bits that need to be generated using
LFSR reseeding. As shown in table2 the 1’s in block 2 and
block 3 don’t need to be generated directly by the LFSR,
but are rather generated as a by-product of the fact that
the hold flags keep the input to the scan chain held
constant at 1. Thus, test data compression can be
achieved in this way.

Moreover, no transitions will occur when
generating block 2 and block 3 because the hold flags are 1
thus keeping all the bits in the blocks constant. This would
not be the case in conventional LFSR reseeding where the
X’s in blocks 1 and 2 get filled with random data which
may results in many more transitions. Thus, a reduction in
the number of transitions can be achieved in this way.

2.3 Conversion Procedure

It is possible to increase the number of non-
transition blocks by converting some transitions blocks
into non-transition blocks. There are two requirements
that must be satisfied in order to convert a transition
block into a non-transition block. The first is that it cannot
contain both specified 0’s and specified 1’s. The second is
that the last bit of the previous block must be an X. Two
examples of this are shown in table3.1.

 Block 2 is initially a transition block even though it
only contains specified 0’s because the last specified bit in
block 1 was a 1. However, the very last bit of block 1 is a
don’t care, so a conversion

Table 1. Example of encoding test data

procedure can be used to specify that don’t care as a 0

and thereby convert block 2 into a non-transition block.
Even though this conversion required adding an extra
specified data bit, the net result is still a reduction in the
total number of specified bits because now block 2 is a
non-transition block and thus none of its data bits need to
be generated by the LFSR.

This same conversion procedure can also be used
to convert block 4 in Table 1. In to a non-transition block.
By increasing the number of non-transition blocks, the
conversion procedure can help to reduce both test storage
(since it can reduce the total number of specified bits) as
well as test power (since it can reduce the number of
transitions by enabling all the X’s in the converted non-

transition block to be filled with the same logic value
Convert blocks 2 and 4 into non-transitions blocks) .

Table 2. Example of conversion procedure (last bit
of blocks 1 and 3 are specified to convert blocks 2 and 4 in
to non-transitions blocks

2.4. Partitioning into Hold Cube Compatible Sets

 The test storage for LFSR reseeding depends on

the number of specified bits. For each block that is not a
don’t care block, the hold flag for that block is specified. If
the number of specified hold flags becomes larger than the
number of the specified test data bits that are reduced by
using the proposed encoding scheme, then the encoding
scheme would be reducing test power dissipation at the
cost of test storage. The test storage would increase
because the total number of specified data bits plus
specified hold bits would exceed the total number of
specified bits in the original test cubes. However, in this
chapter, a method for reducing the number of specified
hold flags is introduced. The key idea is to take advantage
of the fact that many test cubes may have compatible
assignments in their corresponding hold flags. We will
denote the set of hold flags for one test cube as a hold cube
since each hold flag can be either a 1, 0, or don’t care (X). If
several consecutive test cubes have the same hold cube, it
is not necessary to change any of the hold flags. Thus, the
hold flags could be loaded once and then reused when
applying subsequent test cubes.

The hold cubes for a pair of test cubes are
compatible if they do not conflict in any specified bit
positions. In other words, for every bit position where one
hold cube has a specified value, the other hold Cube has
either the same specified value or a don’t care (and vice
versa). Let a hold cube compatible set be defined as a set
of test cubes with mutually compatible hold cubes. Since
typically only around 1-5% of the data bits in a test cube
are specified, the corresponding hold cube will typically
have a large number of don’t cares

present for LFSR reseeding anyway) and some small
combinational logic. The size of the HF-SR dominantly
determines the hardware overhead in this scheme. It
depends on the number of scan chains and the total
number of blocks.

3. SIMULATION RESULTS

The code for LFSR and LFSR Reseeding with and
without Encoding Algorithm code is written in VHDL and
simulated using MODELSIM 5.7G

3.1 LFSR Reseeding Without Algorithm

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 01 | March-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 58

 By observing the result when the clock is high the
LFSR generates the Test patterns and it shifted to the scan
chain, the scan chain data are fed to input of the test circuit
.In this method the test patterns are high, they take more
time to process the data and it’s power consumption is
measured with the help of XILINX power analysis tool.

Fig 2 simulation result of S27 without Algorithm

Fig 3 simulation result of C17 without Algorithm

3.2 LFSR Reseeding With Algorithm

By observing the result when the clock is high the
LFSR generates the Test patterns, if the hold flag is set, the
encoded data are fed to the scan chain otherwise
generated LFSR test patterns are fed to the scan chain. The
scan chain data are fed to input of the test circuit, and it’s
power consumption is measured with the help of XILINX
power analysis tool.

 Fig4.simulation result of S27 with Algorithm

Table 3. Comparison of with and without algorithm

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 01 | March-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET.NET- All Rights Reserved Page 59

 Fig 5. simulation result of C17 with Algorithm

3.3 Comparison of LFSR reseeding without algorithm
along with LFSR reseeding with algorithm

The Method LFSR Reseeding without algorithm
consumes more power and the device utilization is more,
compare to LFSR Reseeding with circuit

4. CONCLUSION

LFSR reseeding is a powerful approach for
reducing test storage. The proposed Encoding scheme
provides a way to reduce test power for LFSR reseeding. It
acts as a second stage of compression after LFSR
reseeding. By employing hold flags, not only is test power
reduced, but also test storage can be reduced. Further the
Encoding scheme will be implemented in BIST
Environment and will be tested with the help of
Benchmark Circuits using MODELSIM and XILINX tool.

REFERENCES

[1] Harikrishna Parmar and Prof. Usha Mehta "A
statistical test data compression technique with
adaptive bit filling and AI based reordering:
optimization for compression and scan power”
International Journal of VLSI and Signal Processing
Applications, Vol. 1, Issue 2 , May 2011,(15-24).

[2] Chandra, A., and K. Chakrabarty(2002), "Reduction of
SOC Test Data Volume, Scan Power and Testing Time
Using Alternating Run-length Codes," Proc. Of Design
Automation Conference, pp. 673-678.

[3] Rosinger, P. M., B.M. Al-Hashimi, and N. Nicolici(2002),
"Low Power Mixed- Mode BIST Based on Mask Pattern
Generation Using Dual LFSR Re-seeding," Proc. of Int.
Conference on Computer Design, pp. 474-47.

[4] Samaranayake, S., N. Sitchinava, R. Kapur, M.B.
Amin(2002), and T.W. Williams, "Dynamic Scan:
Driving Down the Cost of Test," Computer, Vol. 35,
Issue 10, pp. 63 - 68,

[5] Sankaralingam, R., R.R. Oruganti, and N.A.
Touba(2000), "StaticCompaction techniques to
control scan vector power dissipation," Proc. of VLSI
Test Symp., pp. 35-40

[6] N. Zacharia, J. Rasjski, and J. Tyszer(1995),
“Decompression of test data using variable-length
seed LFSRs,” in Proc. VLSI Test Symp., pp. 426–433.

[7] Hellebrand, S., S. Tarnick, J. Rajski, and B.
Courtois(1992), "Generation of Vector Patterns
through Reseeding of Multiple-Polynomial Linear
Feedback Shift Register," Proc. of International Test
Conference, pp. 120-129.

[8] Krishna, C.V., A. Jas, and N.A. Touba(2001), "Test
Vector Encoding Using Partial LFSR Reseeding", Proc.
of IEEE International Test Conference, pp. 885-893.

[9] Hellebrand, S., J. Rajski, S. Tarnick, S. Venkataraman,
and B. Courtois(1995),"Built-in Test for Circuits with
Scan Based on Reseeding of Multiple-Polynomial
Linear Feedback Shift Registers," IEEE Trans. on
Computers, Vol. 44, No. 2, pp. 223-233.

[10] Krishna, C.V., and N.A. Touba(2001), "Reducing Test
Data Volume Using LFSR Reseeding with Seed
Compression ", Proc. of IEEE International Test
Conference, pp. 321-330.

[11] Koenemann, B(1991)., "LFSR-Coded Test Patterns for
Scan Designs," Proc. of European Test Conference, pp.
237-242.

[12] Jinkyu Lee and Nur A. Touba(2007),LFSR-Reseeding
Scheme Achieving Low-Power Dissipation During
Test”, Proc. of European Test Conference, pp. 237-242

Criteria Circuit
name

LFSR
reseeding
without
algorithm

LFSR
reseeding
with
algorithm

Power
in Mw

S27 21 16

Power
in Mw

C17 31 22

Test
data
volume

S27 543 256

Test
data
volume

C17 634 342

