
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 16

From Development to Deployment: Streamlining MLOps with

Monoliths, Microservices, and Amazon SageMaker

Karanbir Singh

Senior Software Engineer, Salesforce, San Francisco, United States
---***---

Abstract - In the era of AI, Machine learning models are

integral to modern software applications. From spam
detectors to self-driving cars, intelligent machine learning
models are making their mark. However, the process of
transitioning from model development to deployment poses
significant challenges. This article aims to explore the model
deployment process in detail and compare different
deployment strategies such as Deploy as Monolithic, Deploy
as Microservices, and Deploy using Amazon SageMaker. It
also shed light on how Microservices and Amazon
SageMaker can streamline and enhance Machine Learning
Operations (MLOps). Additionally, it highlights relevant
tools and practices that complement these approaches.

Key Words: MLOps , Microservices, Monoliths, Amazon
SageMaker, Kubernetes, Artificial Intelligence,
Scalability, Model Development Lifecycle

1. INTRODUCTION

Developing a machine learning model is just the beginning
of its lifecycle. To deliver value in a production
environment, the model needs to be deployed efficiently,
scaled to meet demand, and maintained over time. This
process, commonly referred to as Machine Learning
Operations (MLOps), encompasses the activities that
ensure the model performs as expected when integrated
into a broader application system.

This article outlines the key stages of model development
and explores the architectural choices for deploying
models in a production environment, focusing on
Kubernetes and Amazon SageMaker.

1.1. Model Development: A Brief Overview

The process of model development typically involves the
following steps:

● Data Analysis: Understanding the data, cleaning
it, and preparing it for training is the foundation of any
machine learning model. This phase involves identifying
patterns, relationships, and anomalies in the dataset.

● Algorithm Selection: Depending on the use case,
a suitable algorithm is chosen. This could range from

simple regression models to complex deep learning
architectures.

● Training: The model is trained on the dataset to
learn the underlying patterns and relationships. The goal
is to optimize the model to generalize well to new, unseen
data.

● Model Evaluation: After training, the model is
evaluated to ensure it is neither underfitting (failing to
capture important patterns) nor overfitting (capturing
noise in the data as if it were important).

● Efficiency Computation: The model’s efficiency
is computed in terms of its performance metrics, such as
accuracy, precision, recall, or F1 score, depending on the
use case.

2. Architectural Approaches for Model
Deployment

Understanding how the model will be used in production
as well as target audience is essential to guiding
architectural choices for deployment

2.1. Monolithic Approach

The monolithic approach involves deploying the entire
system as a single, unified unit. This means that all
components—whether they pertain to the user interface,
business logic, or machine learning models—are tightly
coupled and deployed together as a single application.

2.1.1. Example Use Case: Car Dealership
Application

Let’s consider a medium-sized car dealership that aims to
provide personalized car recommendations to its
customers based on their preferences. Since the target
audience is relatively small, and the system does not
require handling multiple versions of the application or
models simultaneously, a monolithic architecture can be a
practical choice.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 17

Figure 1. Architecture of the Monolith Deployment for the
Car Customization Application.

In this case, the machine learning model that powers the
car recommendation engine is embedded directly within
the application, along with the user interface and business
logic. All the components are bundled together into a
single deployable unit, making it easier to manage and
deploy.

Pros:

● Easy to maintain: Since all components are part
of the same application, maintaining the system is
straightforward. Updates, bug fixes, and new features can
be implemented in a unified manner, without the need to
coordinate changes across multiple services.

● Quick deployment: The entire system can be
deployed at once, reducing the complexity of the
deployment phase. This can be especially beneficial in
environments where frequent updates or multiple
versions are not required.

Cons:

● Lack of scalability: One of the key challenges of
the monolithic approach is scalability. If any part of the
system needs to scale to handle increased demand (e.g.,
the recommendation engine during a promotional event),
the entire application must be scaled as a whole. This can
lead to inefficient resource usage.

● Difficult to update individual components: As
the system grows, making updates to individual
components can become more challenging. For instance, if
the machine learning model needs to be retrained and
updated, it may require redeploying the entire application,
leading to potential downtime and increased deployment
complexity.

While the monolithic approach may work well for smaller
projects or systems with limited scalability requirements,

it can struggle as the system grows or when components
need to be independently updated or scaled.

2.2. Microservices Approach

In the software industry, microservices architecture is a
method of structuring applications as a collection of
smaller, independent services that communicate with each
other via APIs [1]. Each service operates as a standalone
component, allowing for greater flexibility in
development, deployment, and scaling. This approach
contrasts with monolithic architecture, where all
components are bundled together and deployed as a single
unit.

2.2.1. Example Use Case: Car Company
Application in a Private Cloud

Building on our previous example, let’s consider that a car
company wants to create an application for customizing
car options. However, due to concerns about data
exposure, they prefer to build the system in their private
cloud. In this scenario, the microservices architecture is a
suitable choice, as it allows for independent scaling and
management of services while maintaining control over
data security within their private infrastructure.

For instance, the car company might need to deploy
different versions of the application for various car models
and variants, such as electric vehicles, luxury sedans, or
SUVs. Each variant may require different machine learning
models for recommendation engines, user customization,
or predictive maintenance. The ability to deploy and
manage these models as separate microservices ensures
that updates and scaling can occur independently, without
affecting the entire system.

Figure 2. Architecture of the Microservices Deployment for
the Car Customization Application

Deploying the system in a private cloud adds an extra
layer of security, as all data remains within the company's

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 18

controlled environment. This is especially important when
handling sensitive customer data, proprietary algorithms,
or intellectual property related to car designs and features.
By using microservices in a private cloud, the car company
can balance scalability with security.

2.2.2. Microservices with Kubernetes

To efficiently manage this architecture, Kubernetes can be
employed to orchestrate and scale containerized
microservices. Kubernetes is a powerful tool for
automating the deployment, scaling, and operation of
application containers. [2] When used in conjunction with
microservices in a private cloud, Kubernetes provides
robust control over the system’s infrastructure while
ensuring that the application remains secure and scalable.

Pros:

● Quick Deployment: Kubernetes automates much
of the deployment process, enabling rapid and consistent
releases across the private cloud environment. This allows
the car company to roll out new features or model updates
without risking disruptions to the entire system.

● Auto-scaling: Kubernetes can automatically scale
individual microservices based on traffic and load. This
ensures efficient resource utilization, allowing the system
to handle varying levels of demand—such as during a new
car launch—without compromising performance.

● Ease of Maintenance: Kubernetes abstracts away
much of the complexity involved in maintaining
containerized applications. It offers built-in tools for
monitoring, logging, and service discovery, which simplify
the management of microservices over time.

Kubernetes enables the deployment of machine learning
models and microservices in a highly scalable,
maintainable, and efficient manner. For environments that
require multiple models or services to be managed,
updated, and scaled independently, Kubernetes excels.
Additionally, Kubernetes offers advanced features such as
rolling updates, service discovery, and self-healing,
ensuring that the application remains available and
resilient, even during updates or unexpected failures.

By deploying microservices within a private cloud and
orchestrating them with Kubernetes, the car company can
achieve a balance between scalability, security, and
operational efficiency. This approach ensures that
sensitive data remains protected while still benefiting
from the flexibility and robustness of modern cloud-native
technologies.

2.3. Amazon SageMaker Approach

Amazon SageMaker is a fully managed service from AWS
that allows data scientists and developers to build, train,
and deploy machine learning models at scale. SageMaker
simplifies the entire machine learning lifecycle by
providing a set of tools and infrastructure that automates
much of the process. [3]

Key Features of Amazon SageMaker:

● Managed Infrastructure: Amazon SageMaker
abstracts away the need to manage underlying
infrastructure. It computes resources, handles scaling, and
ensures that the environment is configured optimally for
the model's requirements.

● Built-in Algorithms and Frameworks:
SageMaker supports a wide range of built-in algorithms
and pre-configured environments for popular frameworks
like TensorFlow, PyTorch, and Scikit-learn. This reduces
the time needed to set up the development environment.

● Automatic Model Tuning: SageMaker provides
automated hyperparameter tuning to optimize model
performance. It uses machine learning to search for the
best set of hyperparameters, making it easier to achieve
optimal results without manual intervention.

● One-Click Deployment: Once a model is trained,
SageMaker allows for one-click deployment, where the
model can be launched as an endpoint that automatically
scales based on traffic. This simplifies the process of
making the model accessible to production applications.

● Multi-Model Endpoints: SageMaker supports
multi-model endpoints, enabling multiple models to be
hosted on a single endpoint. This can reduce costs by
consolidating resources and simplifying the architecture.

● Monitoring and Logging: SageMaker integrates
with AWS CloudWatch to monitor deployed models,
providing insights into performance and operational
metrics. This is crucial for maintaining models in
production and ensuring they continue to perform well
over time.

Pros:

● End-to-End Management: SageMaker covers the
entire machine learning lifecycle, from data preparation to
deployment, reducing the need for multiple tools and
integrations.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 09 | Sep 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 19

● Scalability: Amazon SageMaker automatically
scales the infrastructure to meet demand, ensuring that
models can handle varying levels of traffic.

● Ease of Use: SageMaker’s interface and
integrations with other AWS services make it user-
friendly, even for teams without extensive DevOps
experience.

Cons:

● Dependency on AWS Ecosystem: While
SageMaker provides a seamless experience within the
AWS ecosystem, it may not be the best choice for
organizations using multi-cloud strategies or those
seeking to avoid vendor lock-in.

● Cost: SageMaker’s managed service can incur
significant costs, particularly for large-scale deployments
or models that require constant tuning and monitoring.

3. Other Relevant Tools and Practices

In addition to Kubernetes and Amazon SageMaker, several
tools and practices complement MLOps pipelines:

● Pickling a Model: Pickling is a process for
serializing a Python object, such as a trained machine
learning model, so it can be saved to disk and later
reloaded. This technique is commonly used for model
persistence, allowing models to be easily loaded and
deployed in production environments.

● Jenkins: Jenkins is an open-source automation
server that facilitates continuous integration and
continuous delivery (CI/CD). It can be used to automate
the deployment of machine learning models by integrating
with Kubernetes and other tools to streamline the build,
test, and deployment processes.

● Docker: Docker containers are essential to
modern MLOps pipelines. Docker enables the packaging of
applications, including their dependencies, into isolated
containers that can be deployed consistently across
different environments. Both Kubernetes and Amazon
SageMaker leverage Docker containers for model
deployment.

4. Conclusion

Deploying machine learning models in production
requires careful consideration of the architectural
approach. While monolithic systems may suffice for small
projects, Kubernetes and Amazon SageMaker offer the
scalability and flexibility needed for larger, more complex
deployments. Kubernetes, in particular, stands out for its

ability to automate deployment and scaling, making it an
ideal choice for teams with containerization expertise.
Amazon SageMaker simplifies the machine learning
lifecycle through a fully managed service, making it a great
option for teams seeking to accelerate deployment with
minimal infrastructure management.

The integration of complementary tools like Jenkins and
Docker further enhances the efficiency and reliability of
model deployment pipelines. As machine learning
continues to drive innovation, MLOps practices will play a
critical role in ensuring that models deliver consistent,
real-world value.

REFERENCES

[1] Fowler, M. (2014). Microservices: A definition of this
new architectural term. Retrieved from
https://martinfowler.com/articles/microservices.html

[2] Kubernetes Documentation. (n.d.). Kubernetes
documentation. Retrieved from
https://kubernetes.io/docs/

[3] Amazon Web Services. (n.d.). Amazon SageMaker
developer guide. Retrieved from
https://docs.aws.amazon.com/sagemaker/

BIOGRAPHIES

Karanbir Singh is an expert in MLOps
with a specialization in tools like
Kubernetes and Amazon SageMaker.
Karanbir holds a MS in Software
Engineering from San Jose State
University, United States. With a
strong educational background in
Computer Science and Engineering,
they have honed their skills in cutting-
edge AI techniques. Currently working
at Salesforce, Karanbir is dedicated to
making complex technical concepts
accessible and practical for a wide
audience. Their work reflects a deep
commitment to advancing the field of
artificial intelligence and empowering
others with knowledge.

https://martinfowler.com/articles/microservices.html
https://kubernetes.io/docs/
https://docs.aws.amazon.com/sagemaker/

