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Abstract –This paper describes an implementation of 
warped Gaussian process using a simple example. The 
results show the advantages of this method over a 
traditional Gaussian process. The flexibility of the warped 
Gaussian process maintains interpretability and 
mathematical foundation while accounting for non-
Gaussian and/or noisy data. These features provide a basis 
for using this method in power grid applications, where this 
method is underrepresented in the literature. As exemplified 
by measurements taken in the Autonomous Intelligence 
Measurement Sensors and Systems (AIMS) project, data 
collected from sensors to support grid operations is non-
Gaussian and noisy in nature. Warped Gaussian process is a 
flexible method suitable for analyzing multiple different 
types of power grid data.  
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1.INTRODUCTION  
 
A Warped Gaussian Process (WGP) is a variation of the 
traditional Gaussian Process (GP). This method introduces 
a warping function that can account for non-Gaussian data, 
non-Gaussian noise, and capture more of the uncertainty 
in the data than the traditional Gaussian Process [1]. This 
tutorial will walk through the mathematical background 
and present a straightforward example using Python [2]. 
 

2. WARPED GAUSSIAN PROCESS 
 
2.1 Define the Gaussian Process 
 
In a traditional GP, we define a prior distribution over 
multiple functions so that we can infer a posterior 
distribution that better represents the actual underlying 
distribution. Once the posterior is determined, it can be 
used to calculate mean, variance, etc. GPs are particularly 
useful from a function space perspective [3], which is how 
we will proceed in this tutorial. First, define X to be a 
vector of random variables that follow a Gaussian 
distribution, then 
 
   [           ] 
         
 

where µ is the mean and Σ is the covariance matrix. Then 
there is a corresponding collection of function values that 
also follows a Gaussian distribution: 
 
f(x) = [f(x1) f(x2)  …  f(xn) ]T 

 

By definition, a GP is a collection of random variables 
which have a joint Gaussian distribution [4]. Thus, f(x) is a 
Gaussian process and can be further defined as follows: 

f(x) ∼ GP(m(x),k(x,x′)) 
m(x) = E[f(x)] 
k(x,x′) = 
E[(f(x)−m(x))(f(x′)−m(x′))] +δijσ2  

ϵ ∼ N(0, σ2) 
 
where m(x) is the mean function, k(x,x′) is the covariance 
function (also known as a kernel), δ is the Kronecker delta, 
and ϵ is the independent and identically distributed 
Gaussian noise. 
 

2.2 Implementing the Warping Function 
 
In order to warp the observation space to latent space, let 
z be a vector of latent target values modelled by a GP. The 
nonlinear monotonic function g maps all the entries from 
the actual target space to the latent space: 

zn = g(f(x); Ψ) 

where Ψ is a parameter. The function g can be any 
function but must be monotonic to maintain the validity of 
the probability distribution over f(x). Once the target 
values have been warped into latent space, GP progresses 
as normal using z. The conditional distribution determines 
the predictive equations accounting for noise: 

f∗|Z,f + ϵ,Z∗ ∼ N(f∗,cov(f∗)) 
  ̅≜E[Z,f + ϵ,Z∗] = K(Z∗,Z)[K(Z,Z)+σ2I]−1[f + ϵ] 

cov(f∗) = K(Z∗,Z∗)−K(Z∗,Z)[K(Z,Z)+σ2I]−1K(Z,Z∗) 

where the star subscript denotes data from the test subset. 
The marginal likelihood is defined below: 
 

   (     |  )   
 

 
[   ] [         ]  [   ]

 
 

 
   [          ]  

 

 
         



          International Research Journal of Engineering and Technology (IRJET)     e-ISSN: 2395-0056 

                Volume: 11 Issue: 06 | Jun 2024              www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2024, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 418 
 

Once you have the Gaussian based on the latent space, that 
Gaussian is passed back through the warping function to 
get the distribution in the observation space, the shape of 
which will depend on the warping function. Extracting the 
mean and median is described below:  

f(xn+1)med = g−1(zˆn+1) 

E(f(xn+1)) = E(g−1) 
   ∫             ̂        

   

 

In cases where the inverse of the warping function is 
undefined, it will need to be approximated. 
 

3. A SIMPLE EXAMPLE 
 
In this section we will use a simple example to 
demonstrate the benefits of WGP. The function f(x) = x ∗ 
sin(x) defines the dataset over −π to π with additional 
Gaussian noise inserted. Chart 1 shows the underlying 
function and noisy observation data. The data is split into 
training and test data for analysis. The chosen warping 

function is         
 

   (see Chart 2). Once the data has 
been warped into latent space, GP progresses as described 
in Section 1, treating z as the target values. Chart 3 shows 
the heatmaps of the covariance matrices for the warped 
targets that will be used to calculate predictions. The 
predictions from the warped target values are then passed 
back through the warping function to retrieve the 
predictions in the true observation space where f(x) are 
the target values. Chart 4 shows the results of the WGP 
method as well as a traditional GP method for comparison. 
The predictions are charted with dashed lines and the 
95% confidence intervals are shaded in light gray (GP) and 
dark gray (WGP). 
 

 

Chart -1: Observed data f(x) = x ∗ sin(x) + ϵ 
 

 

Chart -2: Observed data after being transformed by the 

warping function         
 

  
 

 

(a) 

 
(b) 

 
(c) 

Chart-3: Covariance calculations on the warped targets, z: 
(a) K(Z, Z), (b) K(Z*, Z*), (c) K(Z*, Z). 
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The results of this example show the advantage WGP has 
in modeling noise. As shown in Chart 4, the GP predictions 
do closely follow the underlying function f(x) = x ∗ sin(x), 
but at the expense of capturing the noisiness of the data. In 
a real-world scenario, noise is often a factor and must be 
modelled accurately. In this example, the added noise was 
Gaussian, but that need not be the case. The nature of WGP 
allows it to model non-Gaussian noise. The WGP better 
approximates all the data over the entire distribution, 
which leads to lower error values (shown in Table 1) in 
both mean absolute error and mean square error. 

Table -1: Results of an example using f(x) = x ∗ sin(x): 
WGP clearly outperforms GP in terms of mean absolute 

error and mean square error. 

Method MAE MSE 

GP 0.725 0.797 

WGP 0.588 0.421 

 

 
 

Chart-4: Results of an example using f(x) = x∗sin(x): The 
WGP method better accounts for noise, leading to 

improved MAE and MSE. 

3.1 Comments 

For simplicity, I used a one-dimensional problem with a 
well-known function. In a real-world scenario, both the GP 
and WGP have parameters that will need to be tuned and 
investigated to determine what effect changing them has 
on the analysis. GP performance can also be influenced by 
choice of basis and kernel functions. Additionally, the 
warping function itself is something that has not been 
deeply investigated in the literature. The choice of a power 
warping function versus and radial basis function may not 
have much effect on MAE or MSE but would change the 
shape of the final distribution. Another avenue would be to 
learn the warping function from the data prior to analysis 

to determine if an “ideal” function can be determined. 
Using WGP methodology should also be evaluated for 
overfitting. Accounting for noise can improve accuracy, 
but if the model is too reliant on training data it may not 
be usable on unseen data. Finally, one major drawback of 
WGP is the computational complexity, which was not 
evaluated here since the example was simple (the dataset 
contained 105 data points). 

 
 

Fig -1: Graphical representation of the elements in a 
power grid and their associated data [5] 

 

4. POWER GRID APPLICABILITY 
 
Data management and analysis is a key issue for the grid 
since the power grid has a large magnitude of diverse data 
associated with its operation. Figure 1 highlights the areas 
where data collection can occur using different sensors. 
The quantity and diversity of this data suggests that there 
will be non-Gaussian representations, non-Gaussian noise, 
asymmetrical and non-stationary data, all of which can be 
served by the flexibility and interpretability of WGP. This 
method is underutilized in power grid research. 
 

5. CONCLUSION 
 
WGP is a method well suited to power grid analysis due to 
its ability to model non-stationary, non-symmetric, non-
Gaussian data. Given how crucial grid operations are to 
managing infrastructure, the interpretable nature of WGP 
is a strength. WGP has all the benefits of traditional GPs 
with the advantage of higher accuracy since this method is 
more adept at capturing noise. Incorporating this method 
into analysis for the Autonomous Intelligence 
Measurement Sensors and Systems (AIMS) project will 
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provide research opportunities for applications on a 
diverse set of real-world data. 
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