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Abstract - This research proposes a unique technique to 
optimize the integration of distributed energy resources 
(DERs) inside distribution networks, intending to improve 
system performance and meet ancillary service requirements. 
This study employs Metaheuristic Optimization Techniques, 
especially a hybrid PSO-EHO algorithm, to determine the ideal 
position and size of DERs. The proposed model's effectiveness 
is assessed using detailed simulations of benchmark 
distribution systems, including the IEEE 33-bus and 69-bus 
test networks. Using MATLAB 2021a and the MATPOWER 7.1 
toolbox, the optimization procedure exhibits remarkable 
convergence behavior, as shown in convergence graphs for 
both systems. The findings show considerable improvements in 
voltage profile and a decrease in active power losses after the 
installation of DGs, demonstrating the efficacy of the suggested 
strategy. Detailed analyses, including voltage magnitudes, 
active power losses, and comparison tables displaying the 
locations and capacities of the DGs, demonstrate the PSO-EHO-
based optimization model's practical feasibility and benefits in 
improving the integration of DERs into distribution networks. 
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1.INTRODUCTION  
 
In recent years, there have been several improvements in the 
electric power industry. Customers are becoming pickier 
about dependability and power quality, while distribution 
network operators (DNOs) are being forced to increase 
energy efficiency to save costs as a result of the current trend 
toward deregulation in the power industry. Shunt capacitors 
(SCs) and distributed generators (DGs) are two examples of 
distributed energy resources (DERs) that are crucial for 
obtaining increased energy efficiency in distribution system 
functioning. To meet smart grid efficiency objectives of loss 
reduction and high-quality electricity provided to the end 
user, integrated solutions to well-formulated challenges that 
reflect the reality on the ground where all such devices 
coexist are needed[1]. While improper DER placement may 
raise system losses as well as network capital and operating 
costs, optimal DER placement can enhance network 
performance in terms of better node voltage profiles, 
decreased power flows, reduced feeder losses, improved 

power quality, and reliability of electric supply. Regardless of 
the specific motivation for a DNO, such as permitting the 
connection of more DG capacity, decreasing energy losses, or 
enhancing network dependability, the DG planning tools 
need to include fundamental network limitations like voltage 
and heat thresholds[2].  

In recent times, there have been several efficacious 
endeavors to address the issue of the ideal distribution of 
either SCs or DGs independently[3]. Nevertheless, the 
deployment strategy of DERs in tandem is more feasible and 
can independently configure and manage the flow of both 
reactive and actual power in a distribution network (DN) [4]. 
Using analytical or heuristic techniques, this simultaneous 
allocation method and have shown the mutual influence of 
these devices on the distribution network's performance. An 
analytical method for the simultaneous installation of SCs 
and DGs to minimize investment costs. By using an analytical 
technique to identify voltage support zones, they narrowed 
the search area, and then used a hybrid PSO-EHO to address 
the issue. 

PSO-EHO technique was used to ascertain the ideal position 
and amount of distributed generation (DG) power factor in 
order to reduce power losses under different 
circumstances[5].It has been shown that the results have 
significantly improved in terms of loss reduction and voltage 
profile improvement. A heuristic method in which the best 
candidate sites are found by a node sensitivity analysis, and 
the capacity of the SCs/DGs is then found through the 
recommendation of a heuristic curve fitting procedure. To 
address this multi-objective optimization issue, a combined 
imperialist competitive algorithm (ICA)–genetic algorithm 
(GA) approach. Using this strategy, dispersed resource 
placement and size are initially determined by the ICA, and 
these solutions are then further refined by the GA 
operators[6]. 

To reduce power losses, several DG types are used for actual 
and reactive power injections. PSO-EHO together with an 
analytical method is used to address the issue. The authors 
concluded that bigger systems are better suited for the 
heuristic method[7]. Nevertheless, the issue goals in these 
efforts have mainly been loss reduction and node voltage 
improvement; peak power losses, feeder current profiles, 
and substation capacity release for DER allocation have not 
been considered. 
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Another operational technique that has been widely 
employed to accomplish several performance goals, 
including power loss reduction, voltage profile 
improvement, and congestion control, is distribution 
network reconfiguration, or DNR. As a result, a coordinated 
strategy for DER allocation in conjunction with DNR may 
more successfully accomplish goals like improved substation 
capacity release, reduced peak power losses, and greater 
energy efficiency [8]. The electricity distribution company 
typically installs SCs, although private investors own DGs. In 
order to assign DGs and SCs concurrently, the electric utility 
should provide the DG investor a coordinated solution for 
the location and scale of DERs. As a matter of fact, a 
concerted effort of this kind may provide the greatest 
possible advantages for the network operator and/or users, 
as well as assess the viability of DER investment in 
comparison to other conventional planning choices [9]. 

appropriate placement of DERs in DN requires determining 
the appropriate quantity, size, and location. [10] It is a 
nonlinear, complicated combinatorial optimization problem. 
Swarm and evolutionary optimization approaches, such as 
GA and PSO, have been shown to achieve global or near-
global optima. When applying these approaches to large-
scale applications[11], [12]it's important to prevent 
premature or sluggish convergence due to the vast search 
area available.  

Only a few of the highest-priority nodes on this list are 
chosen for DER allocation. However, these methodologies 
are not infallible and only give general recommendations on 
the importance of prospective nodes. The node sensitivities 
are determined assuming no such devices are installed. 
Selecting just the top few nodes as sensitive components did 
not provide an accurate representation of the distribution 
network[13]. 

2.  BACKGROUND 

1.1 Particle Swam Optimization (PSO) 
 

The conventional PSO method considers each particle as a 
possible solution to the job inside the search space. In D-
dimensional space, the location and velocity vectors of the ith 

particle may be written as 1 2( , ,..., )i i i iDx x x x
and 

1 2( , ,..., )i i i iDv v v v
, respectively. After random particle 

initialization, the ith particle's velocity and location are 
updated as shown below. 

1 1 2 2( 1) ( ) ( ( )) ( ( ))i i i i g iv t wv t c r p x t c r p x t     

        
        
      (1) 

( 1) ( ) ( 1)i i ix t x t v t   
     (2) 

The inertia weight ( w ) may adjust the effect of prior velocity 

on the present one. The weights of 
;g ip p

are determined by 

two constants, 1c
 and 2c

. ip indicates the best prior position 

of the ith individual, whereas represents the best 
previous position of all particles in the current generation. 

and are two randomly generated variables that have a 
uniform distribution in the range [0, 1]. 
 

Table -1: PSO algorithm 

Step1: Randomly initialize Swarm population of N particles 
Xi ( i=1, 2, …, n) 

Step2: Select hyperparameter values 
           w, c1 and c2 
Step 3: For Iter in range(max_iter):  # loop max_iter times   
            For i in range(N):  # for each particle: 
               a. Compute new velocity of ith particle 
                    swarm[i].velocity =  
                         w*swarm[i].velocity +  
                         r1*c1*(swarm[i].bestPos -swarm[i].position) + 
                         r2*c2*( best_pos_swarm -swarm[i].position)  
               b. Compute new position of ith particle using its new 
velocity 
                    swarm[i].position += swarm[i].velocity 
               c. If position is not in range [minx, maxx] then clip it 
                    if swarm[i].position < minx: 
                        swarm[i].position = minx 
                    elif swarm[i].position > maxx: 
                        swarm[i].position = maxx 
               d. Update new best of this particle and new best of 
Swarm 
                     if swaInsensitive to scaling of design 
variables.rm[i].fitness < swarm[i].bestFitness: 
                        swarm[i].bestFitness = swarm[i].fitness 
                        swarm[i].bestPos = swarm[i].position 
 
                     if swarm[i].fitness < best_fitness_swarm 
                        best_fitness_swarm = swarm[i].fitness 
                        best_pos_swarm = swarm[i].position 
             End-for 
         End -for 
Step 4: Return best particle of Swarm 

 

1.2 Elephant Herding Optimization (EHO) 
 

To overcome global optimization challenges, we simplified 
elephant herding behavior into the idealized guidelines 
below. 

1) The elephant population consists of clans, each with a 
certain number of elephants. 

2) Each generation, a certain number of male elephants 
leave their family group to live alone distant from the main 
group. 

3) Each tribe of elephants is led by a matriarch. 

2r1r

gp
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A. Clan updating operator 
As mentioned before, all the elephants live together under 

the leadership of a matriarch in each clan. Therefore, for 
each elephant in clan ci, its next position is influenced by 
matriarch ci. For the elephant j in clan ci, it can be updated as 

 , , , , ,new ci j ci j best ci ci jx x x x r    
 (3) 

, ,new ci jx
and ,ci jx

represent the updated and old positions 

of elephant 
j

in clan ci , respectively. The scale factor 

 0,1 
defines the impact of matriarch ci on ,ci jx

.  

,best cix
signifies matriarch ci , the fittest elephant in clan ci . 

 0,1r
. Here, uniform distribution is applied. 

Eq. (1) does not update the fittest elephant in each 

clan , ,ci j best cix x
. The fittest one may be upgraded as 

follows: 

, , ,new ci j cener cix x 
    (4) 

where the impact of the ,cener cix
on the , ,new ci jx

 is 

determined by a factor 
 0,1 

. As we can see, the 

knowledge gathered by every elephant in clan ci is what 

creates the new individual , ,new ci jx
in Equation (4). The 

center of clan ci is denoted by ,center cix
 and its d-th 

dimension may be computed as 

, , , ,

1

1 cin

center ci d ci j d

jci

x x
n 

 
   (5) 

where 1 d D   signifies the d-th dimension and D is 

the total dimension. cin
 represents the number of elephants 

in clan ci . , ,ci j dx
 represents the d-th elephant individual 

,ci jx
. Eq. (5) calculates the center of clan ,, center cici x

 using D 
computations. 

B. Separating operator 
In elephant group, male elephants will leave their family 

group and live alone when they reach puberty. This 
separating process can be modelled into separating operator 
when solving optimization problems. In order to further 
improve the search ability of EHO method, let us assume that 
the elephant individuals with the worst fitness will 
implement the separating operator at each generation as 
shown in Eq. (6). 

, min max min( 1)worst cix x x x rand    
 (6) 

maxx
 and minx

 represent the maximum and lower bounds 

of an elephant's location. The worst elephant in clan ci  is 

represented by ,worst cix
. We employ a uniform distribution in 

the range 
 0,1

 rather than a stochastic distribution in 

 0,1rand 
. 

 
Table -2: Elephant Herding Optimization (EHO) 

Algorithm 1 Elephant Herding Optimization (EHO) 

1: Initialize population of elephants with random 
positions 

2: Define parameters: number of clans (C), number of 
elephants per clan (N), maximum number of generations (G), 
scale factor (σ), separating probability (psep), and maximum 
mutation step size (∆max) 

3: while not reached maximum generations do 
4:   Evaluate fitness of each elephant 
5:   for each clan ci do 
6:    Find the fittest elephant 

xbest,ci in clan ci  
7:    Calculate the center xcenter,ci 

of clan ci 
8:    for each elephant j in clan 

ci do 
9:     if elephant j is not 

the fittest in clan ci then 
10:     Generate a 

random scale factor r 
11:     Update elephant 

j’s position: 
12:     xnew,ci,j = xci,j + σ 

· (xbest,ci − xci,j ) · r  
13:    else 
14:     Generate a 

random factor η 
15:     Calculate the new 

position based on the center of the clan: 
16                    xnew,ci,j = xcenter,ci + η · (xci,j − xcenter,ci ) 
 
17:    end if 
18:   end for 
19:  end for 
20:  for each clan ci do 
21:   Find the elephant with the worst 

fitness xworst,ci in clan ci 
22:   if random probability p < psep then 
23:    Generate a random value 

rand 
24:    Update xworst,ci ’s position: 
25:    xworst,ci = xworst,ci + rand 

· ∆max 
26:   end if 
27:  end for 
28:  Ensure that all elephant positions are 

within the feasible range 
29:  Increment generation count 
30: end while 
31: Select the best solution from the final population 
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· − 

· − · 

1.3 Objective Function 
 
In a hybrid EH-PSO method, the objective function f(x) 

represents the function to be optimized. This function 
assesses the quality or fitness of a solution represented by 
the vector x in the search space. 

The objective function, denoted as 
 f x

, is defined 
depending on the issue being addressed. In a minimization 
problem, the objective is to discover the smallest possible 

value for the function 
 f x

, whereas in a maximization 
issue, the objective is to find the largest possible value. 

The objective function may be mathematically expressed 
as: 

Minimize 
 f x

 
Or 

Maximize  f x  
Where: 
 x is a vector that represents a possible solution in 

the search space. 

 The objective function 
 f x

examines the quality 

of a solution ( x ). 
In a hybrid EH-PSO method, the optimization process 

combines EHO's exploration and PSO's exploitation 
capabilities. This combination seeks to strike a better 
balance between exploration and exploitation, resulting in 
enhanced convergence characteristics and solution quality. 

The hybrid method repeatedly adjusts particle locations 

(represented by x ) using a mix of EHO and PSO processes. 
These systems are often built around mathematical 
equations that regulate particle movement in the search 
space. 

In PSO, the update equation for a particle's location at 
iteration t+1 may be stated as follows: 

( 1) ( ) ( 1)t t t

i i ix x v  
 

 
( )t

ix
is the position of particle i at iteration t. 

 
( 1)t

iv 

is the velocity of particle i at iteration t+1 
Similarly, in EHO, the update equation for an elephant's 

location may be represented in numerous ways depending 
on its dynamics and exploration approach. 

 
The hybrid EH-PSO method combines the update 

equations from EHO and PSO in a manner that takes use of 
each algorithms' capabilities. The objective function 
 f x directs the optimization process and ensures high-

quality solutions for the issue. 
 
 
 
 
 
 

Table -3: Proposed Algorithm 

Algorithm 1 Hybrid PSO-EHO Algorithm for Hyper 
parameter Tuning 

1: Initialize population of elephants and swarm of 
particles with random positions 

2: Define parameters for both algorithms: 

• For EHO: number of clans (C), 
number of elephants per clan (N), 
maximum generations (G), scale 
factor (σ), separating probability 
(psep), and maximum mutation step 
size (∆max) 

• For PSO: maximum number of 
iterations (max iter ),  inertia  weight 
(w ), cognitive weight (c1 ), and social 
weight (c2 ) 

3: while not reached maximum generations (for EHO) or 
maximum iterations (for PSO) do 

4: Perform EHO steps: 

5: Evaluate fitness of each elephant 

6: for each clan ci do 

7: Find the fittest elephant xbest,ci in clan ci 

8: Calculate the center xcenter,ci of clan ci 

9: for each elephant j in clan ci do 

10: if elephant j is not the fittest in clan ci then 

11: Generate a random scale factor r 

12: Update elephant j’s position: 

13: xnew,ci,j  = xci,j + σ  (xbest,ci xci,j )  r 

14: else 

15: Generate a random factor η 

16: Calculate the new position based on the center of the 
clan: 

17: xnew,ci,j = xcenter,ci + η  (xci,j xcenter,ci ) 

18: end if 

19: end for 

20: end for 

21: Perform separating operator 

22: Ensure that all elephant positions are within the 
feasible range 

23: Perform PSO steps: 

24: for Iter in range (max iter) do 

25: for each particle in swarm do 

26: Compute new velocity of particle 
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27: Compute new position of particle using its new 
velocity 

28: Clip position if out of range 

29: Update best position of particle and best position of 
swarm 

30: end for 

31: end for 

32: Increment generation count or iteration count 

33: end while 

34: Return the best solution found by EH-PSO 

 

3. PROBLEM FORMULATION 
 
The optimal allocation of DERs aims to maximize annual 
savings and profit by reducing charges for energy losses, peak 
power losses, and substation capacity release, while 
maintaining better node voltage and feeder current profiles 
under multi-level loads. A penalty function technique is given 
for determining the maximum node voltage variation and 
temperature limit of distribution feeders. The objective 
function is expressed as follows: 

, , , ,

1 1

. ( )
L LN N

P P

e loss bj j loss aj j p loss b loss a

j j

Max F K P H P H K P P 
 

  
     

 
 

 

 , , ;

1 1

( )
loc loc

p p

S b a SC SC n DG DG n

n n

K S S K Q K P  
 

    
 

,n N j L   
    (7) 

where N and L represent the number of system nodes and 
load levels, respectively. The multi-level piece-wise yearly 
load profile considers the number of load levels and their 

durations ( LN
 and jH

respectively). ,loss bjP
 and ,loss ajP

 
represent power losses for uncompensated and compensated 

systems at the thj
 load level, respectively. ,loss bP

 and ,loss aP
 

represent peak power losses for uncompensated and 

compensated systems. 
p

bS
 represents the base case sub-

station capacity, while
p

aS
 represents the sub-station 

capacity after DER allocation and reconfiguration. SCQ
 and 

DGP
 represent reactive and active compensation at a 

candidate node. e p S SC DGK K K K K
 are the unit costs of 

energy, peak power losses, sub-station capacity release, shunt 
capacitor installation, and DG installation, respectively. The 
first and second terms reflect the costs of reducing yearly 
energy loss and peak power loss, respectively. The third term 
covers the yearly costs for substation capacity release. The 
fourth and final periods represent the yearly costs for 

installing SCs and DGs, respectively. The penalty function   

is designed to address node voltage variations and feeder 
current constraints. It is defined as the geometric mean of the 

node voltage penalty function pfV
 and the feeder current 

penalty function pfI
, as seen below: 

 pf pfV I  
    (8) 

Where 

1
; ,

1 ( )
pf

nj

V n L j L
Max V

    
 

 (9) 

1
; ,

1 ( )
pf

nj

I n N j L
Max I

    
 

 (10) 

Equation (9) demonstrates that pfV
 is derived by assessing 

the highest deviation in node voltage across all system nodes, 

considering all load levels. Here, njV
 represents the voltage 

deviation of the thn
 node from the source voltage at the jth 

load level. Similarly, the value of pfI
 is calculated using 

equation (10), where njI
 represents the deviation of the 

current in the thn
 feeder from its rated ampacity during the 

thj
 load level. The values of nj njI and V 

are determined by 
using equations (11) and (12), respectively. A soft voltage 
limitation is implemented in (5) by establishing a minimum 

specified node voltage, min SV
, which must be maintained 

below the minimum allowable node voltage, minV
, as 

determined by the power regulating authority. maxV
refers to 

the highest allowable voltage at a node as determined by 

regulatory bodies, whereas 
max

nI represents the designated 
line ampacity for the nth line. 

min min

min max

1 ;

0; ; ,

arg ;

nj S nj

nj nj

V V V V

V V V V n N j L

a very l e number else

   
  

        
 
   (11) 

 

max0;
; ,

arg ;

nj n

nj

I I
I n N j L

a very l e number else

  
      

   (12) 

As follows, the capital recovery factor 


 for DER 
investments are calculated: 
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( (1 ) ) / ((1 ) 1)Y Yd d d    
  (13) 

where d represents the discount rate and Y denotes the 
DER allocation project's planning horizon.  
The subsequent operational limitations are implemented:  

( ) 0;jg h j L  
    (14) 

 

where 
( )jg h

denotes the collection of power flow 

equations applicable to the thj
 load level. 

At each node, the aggregate active and reactive power 
introduced by DG and SCs must remain within the 
permissible range, which is delineated as follows: 

,min , ,max ;SC SC n SCQ Q Q n N   
  (15) 

,min , ,max ;DG DG n DGP P P n N   
  (16) 

where ,minDGP
 and ,maxDGP

represent, respectively, the 
minimum and maximum active power generation limits at a 
node. In the same manner, the minimum and maximum limits 
on reactive power generation at a node are denoted as 

,minSCQ
 and ,maxSCQ

, respectively.  

The following are the defined system power generation 
limits for SCs and DGs: 

,

1

;
loc

SC n D

n

Q Q n N


  
    

       (17) 

,

1

;
loc

DG n D

n

P P n N


  
    

       (18) 

It is postulated that the combined active and reactive power 
injected by DGs and SCs at every candidate node location 
should be in excess of the system's nominal active power 

demand DQ
 and reactive power demand DP

, respectively. 
Prohibited by equations (15) and (16) is the duplication of 
candidate sites for DERs.  

, , ; ,SC a SC bN N a b N 
    

       (19) 

, , ; ,DG a DG bN N a b N 
    

       (20) 

where NDG and SC refer, correspondingly, to candidate 
sites for DGs and SCs. Given that discrete sizes of DERs are 
commercially available, they are modeled as follows: 

 

; 0,1,2,...,SC b b bQ K Q K nsc 
  (21) 

; 0,1,2,...,DG d d dP K P K ndg 
  (22) 

bQ
and dP

 denote the unit size of SCs and DGs, 
respectively. 

bK
 and dK

denote the quantity of capacitor banks and 
discrete dispatches of DG, respectively. 

Initially optimizing the solution, it determines the ideal 
location and dimensions of Distributed Energy Resources 
(DERs), considering the yearly demand profile. 

Next, the optimization process is performed individually 
for each demand level to find the most efficient power 
distribution of the deployed Distributed Energy Resources 
(DERs). Nevertheless, the locations for Distributed Energy 
Resources (DERs) remain fixed and their capacity is limited 
to the size determined by the solution reached. The 
supplementary limitations necessary to ascertain the most 
efficient allocations of SCs and DGs are represented as 
follows: 

, ,; 0,1,2,..., /SC n t t SC nQ K Q K Q Q   
 (23) 

, ,; 0,1,2,..., /DG n md md DG nP K P K P P   
 (24) 

P  and 
Q

 indicate the relative discrete sizes of 
available commercial SCs and DGs. 

After properly locating Distributed Energy Resources (DERs), 
the distribution network is changed individually for each 
demand level. The reconfiguration issue aims to reduce actual 

power loss lossP
 at the thj

 load level, while ensuring 
compliance with different operational restrictions of the 
network. The mathematical framework for the DNR issue is 
expressed as: 

2 2

. 2
1

. ; ,
E

nj nj

loss j n

n
nj

P Q
Min P R n N j L

V


    

 (25) 

The active and reactive power flows in the nth branch of the 

system are denoted by njP
 and njQ

, respectively, where E 
indicates the total number of branches. The symbol 

nR
represents the resistance of the thn

 branch, whereas 

njV
represents the voltage at the thn

 node at the thj
 load 

level. 

Equation (25) is bound by the following limitations: 

1. Radial topology constraint 

The revised network configuration must be radial, meaning 
that it should not have any closed paths. Thus, the radiality 
constraint for the rth radial topology is defined as: 
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( ) 0;j r j L   
     

       (26) 

( )j r
represents the symbolic representation of a closed 

loop. 

2. Node voltage constraint 

During the DNR, a stringent voltage limit is implemented as a 
crucial operating strategy for the network. During the 
optimization process, it is necessary to ensure that all node 

voltages njV
of the system remain within the specified 

minimum ( minV
) and maximum ( maxV

) limits. 

min max ; ,njV V V n N j L     
 (27) 

The power flow constraint is determined by equation (27).  

The radiality limitation is the most significant obstacle 
when addressing the issue of network reconfiguration. The 
issue is solved using the codification described in[14] in the 
current study. This is a rule-based method for detecting and 
correcting radial topologies that are not practical. Based on 
this codification, three criteria have been formulated using 
graph theory to detect and rectify infeasible individuals that 
may arise throughout the computing process. 

Simulation results: 

The proposed approach is tested using IEEE 33-bus and 69-
bus test distribution systems. In matlab 2021a, the obtained 
results are briefed out in this section as follows. 

IEEE-69 and 33 bus system: 

The IEEE 69,33 BUS systems are utilized by using mat power 
7.1 toolkit and the optimal locations for DG’s and capacities 
are obtained using a hybrid PSO-EHO algorithm. figure1 &2 
shows the objective function value converges over the given 
number of iterations. 

 

Fig-1: 69-Bus convergence plot 

 

Fig- 2: 33-Bus convergence plot 

The obtained voltage magnitudes with and without DG 
placement of a 69 and 33 bus system is shown in fig 3 and 4. 
It is observed that is voltage profile enhances due to the 
placement of DG’s. 

 

Fig - 3: 69-Bus voltage profile 

 
 

Fig- 4: 33-Bus voltage profile 
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In figure 5 and 6 depicts the active power loss of the 33 
and 69 bus systems, and it is observable that the loss is 
significantly reduces due to the placements of DG’s. 
 

 
 

Fig- 5: bus active power loss 

 
 

Fig- 6 : 33-bus active power loss 

The location and capacity of placed DG’s are given in table 4. 
 

Table- 4 Comparison table 

para

met

er 

33-bus system 69-bus system 

DG-

loca

tion 

1 7 8 9 11 4 7 14 16 30 

DG-

cap

acit

y 

0.4

45

4 

0.1

57

0 

0.4

02

2 

0.4

37

6 

0.9

26

7 

0.0

43

9 

0.1

30

5 

0.7

07

9 

0.6

21

0 

0.6

67

6 

 

4. CONCLUSIONS 
 

The suggested technique, tested on both the IEEE 33-bus and 
69-bus test distribution systems, yields encouraging results, 
as seen by simulation results. Using the MATLAB 2021a 
environment and the hybrid PSO-EHO method for optimum 
DG placement, the research successfully demonstrates 
system performance improvements. Figures 1 and 2 provide 
convergence graphs for objective function values across 
iterations, demonstrating the effectiveness of the 
optimization process. The subsequent examination of 
voltage profiles, shown in Figures 3 and 4, demonstrates the 
real advantages of DG deployment, with significant increases 
in voltage magnitudes throughout both systems. 
Furthermore, the decrease in active power losses, as shown 
in Figures 5 and 6, supports the suggested methodology's 
usefulness in improving system efficiency. Table 4 contains a 
thorough comparison of the locations and capabilities of the 
deployed DGs, which provides insights into their strategic 
deployment within the systems. Overall, these findings 
support the hybrid PSO-EHO algorithm's practicality and 
usefulness in optimizing DG placement, which contributes to 
improved system performance, voltage stability, and 
reduced power losses in both 33-bus and 69-bus distribution 
systems 
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