
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 05 | May 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 698

Building Recommendation Systems Using Lambda Architecture

Vipul Bharat Marlecha1 , Aqsa Fulara2, Sreyashi Das3

1Senior Data Engineer, Netflix USA
2Product Manager, Los Angeles, USA

3Senior Data Engineer, Netflix USA

---***---

Abstract - Recommendation systems are indispensable

tools in today's digital landscape, empowering big tech
platforms to deliver personalized experiences to users. This
paper delves into the intricate architecture of
recommendation systems, exploring their components, data
requirements, and the amalgamation of batch processing
and streaming data pipelines within the Lambda
Architecture framework. We examine various
recommendation models, such as collaborative filtering and
content-based systems, shedding light on their
methodologies and applications. Additionally, we dissect the
workflow of recommendation systems, from candidate
selection to real-time model serving, elucidating the
challenges and strategies encountered at each stage.
Through a comprehensive analysis, this paper not only
provides insights into the current state of recommendation
systems but also anticipates future trends and developments
in the field.

Key Words: recommendation systems, lambda
architecture, user preferences, real time analytics

1. Recommendation systems form the backbone
of intelligent applications

Recommendations systems have been around for more
than a decade. However, with the advent of intelligent
systems, personalized recommendations have become
increasingly important to build any applications. Think of
the last video content, post, or article you saw on your
newsfeed, or the product you bought on Amazon, when
you exactly didn’t know what to consume or buy, how did
you land on your final choice? It is likely the application
showed you relevant, similar choices that resonated with
your nuanced preferences, knowing what you've
previously consumed, together with what you’re currently
exploring. Amazon’s ‘frequently bought together’, or ‘deals
for you’ panels to TikTok’s ‘For you’ feed engaged users to
buy their next product or follow the next creator in
intuitive and seamless ways. However, building
recommendation systems, especially with growing data
volumes and ever evolving user preferences is no easy
feat.

Recommendation systems are essential tools for
enhancing user experience and engagement across various
online platforms. Understanding the intricate components
and workflow involved in building recommendation
systems is vital for designing effective and efficient
solutions. This paper provides a comprehensive overview
of these components and workflow, elucidating their
significance in the recommendation system's architecture.

2. Components of a recommendation system

Whether you are building batch or real-time
recommendation systems, there are a few components key
to any recommendation systems.

2.1 Input sources for recommendation
systems

Input Source 1: Near Real Time Data Source. When

users interact with specific items, their actions provide
valuable insights to recommendation systems, enabling
personalized recommendations. Various interactions such
as browsing history, watched content, searched items,
purchases, likes, dislikes, clicks, and time spent engaging
with content all contribute to understanding how, what,
and when users interact with different items. These
interactions are captured and stored in user logs, which
are ingested into asynchronous processing systems like
Apache Kafka. This allows our near-real-time processing
pipeline to further clean, process, and feed the data into an
online machine learning model.

Input Source 2: Offline Data Source. To achieve highly

available, read-heavy data storage for offline data,
Cassandra can be a suitable choice due to its distributed
architecture and ability to handle large volumes of read
requests efficiently. Here's how Cassandra can be utilized
for storing the two types of data mentioned.

 Items or Content: Cassandra can store the entire
inventory of products or content along with their
metadata. Each item can be represented as a row in a
Cassandra table, with columns representing different
attributes such as title, description, categories, genres,
themes, images, popularity scores, etc.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 05 | May 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 699

The rich metadata associated with each item enables
personalized recommendations. Cassandra's ability to
handle large amounts of data makes it suitable for storing
this comprehensive inventory.

With Cassandra's ability to scale horizontally, it can
accommodate the growing inventory of items in
ecommerce or content applications efficiently.

 User Preferences: Cassandra can also store user
preferences and dynamic behavior data. Each user's
preferences, browsing behavior, tastes, attributes, etc., can
be stored as rows in Cassandra tables.

Real-time updates to user preferences can be handled by
Cassandra's ability to support writes at scale. As users
interact with the system, their preferences can be updated
in real-time, ensuring that the recommendation engine
always has the latest data to work with.

Cassandra's distributed nature ensures high availability
and fault tolerance, crucial for handling dynamic and
unpredictable user behavior effectively.

3. Additional factors influencing
recommendation systems

Seasonality Effects. Seasonal trends impact

recommendation relevance, requiring consideration in the
recommendation algorithm to align suggestions with user
interests.

Contextual Data. Geographic, temporal, and social

context significantly influence recommendation outcomes,
necessitating the incorporation of contextual data for
personalized recommendations.

Personal factors. Every person is unique with a variety of

interests that change over time and mood-dependent and
also the ability to accept or reject recommendations which
feeds back into the inference model.

4. Recommendation Models

Collaborative filtering: Seasonal trends impact

recommendation relevance, requiring consideration in the
recommendation algorithm to align suggestions with user
interests.

Context based systems. Here, the models analyze user

interactions and item features (genre, style) to
recommend items similar to user's past preferences,
focusing on individual taste rather than user relationships.

Hybrid Approaches. Many recommendation systems

combine collaborative filtering and content-based

methods, along with advanced techniques like deep
learning, to enhance recommendation accuracy.

Cosine Similarity and Cosine Distance. Cosine similarity

is widely used in recommendation systems to find out
whether two documents, datasets, images are semantically
similar making vector search queries more efficient.

5. Workflow of Recommendation Systems

Candidate Selection: For a given request, either in

context of recommendations for specific item and user
(like others you may like on a product detail page), or in
context of the entire page (home page recommendations),
the model starts with sourcing the recommended items.
This is generated from all the possible sources of items,
considering user interest and item-user affinity.

Ranking Recommendations: The outputs of candidate

selection will be a large list of unranked product items that
can be possible recommendations. Ranking requires
scoring each candidate and sorting them, typically done
through large neural networks optimized for positive
engagement, revenue maximization, likes or clicks. The
outcome is dependent on the model objectives, whether it
is to engage users, spend more time on the site or upsell
higher priced items.

Filtering and Product features: Once the top 5-10

recommendations are served, most recommendation
systems need filtering to serve business logic. Whether it
is boosting certain promotional items, or filtering out the
out of stock items, the product features are usually
completed in post-processing. Heuristics like diverse
content or social proof are common to incorporate here.

In ecommerce systems, the recommendation models take
the form of ‘Frequently bought together’ that is typically
shown on checkout and add-to-cart pages, while ‘Others
you may like’ and ‘Recommended for you’ are in the
product detail page. The homepage has models like
‘Trending’, ‘Best sellers’, ‘Top deals’ that have a broader
appeal.

In content recommendation systems, the homepage
models include ‘For You’, while in-feed models may
include ‘Similar to this post’ or ‘Other titles like this’.

6. Real Time Model Serving System

In our recommendation system architecture, Apache Flink
plays a pivotal role in processing user interaction data in
real-time. This data is sourced from the organization's
logging system, which captures input from users across
various touchpoints. Upon ingestion into Apache Kafka,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 05 | May 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 700

the data stream is then consumed by Apache Flink for
further processing and enrichment.

Apache Flink executes three major tasks as part of its real-
time processing pipeline.

Windowing based on event time: Apache Flink utilizes

event time windowing techniques to organize and process
data streams based on the timestamps associated with
each event. This approach enables the system to
effectively manage and analyze data within specific time
intervals, facilitating tasks such as data cleaning,
normalization, and deduplication. By partitioning data into
windows, Apache Flink ensures that data processing
operations are performed efficiently and accurately,
leading to improved data quality and reliability.

Asynchronous IO calls to Item Service and User
preferences service: Apache Flink interacts

asynchronously with external services, such as the Item
Service and User Preferences Service, to retrieve
additional metadata and dynamic behavior data related to
items and user preferences. These IO calls enable the
system to enrich the raw data stream with valuable
contextual information, enhancing the quality and
relevance of recommendations generated by the system.
By leveraging external services in an asynchronous
manner, Apache Flink ensures that data processing
operations remain efficient and non-blocking, thereby
minimizing latency and maximizing throughput.

Sink Data to Kafka: Once data processing and enrichment

tasks are completed, Apache Flink sinks the processed
data back into Apache Kafka for further consumption or
storage. This final step ensures that the enriched data is
seamlessly integrated back into the streaming pipeline,
making it available for downstream applications or
systems. By leveraging Kafka as a data sink, Apache Flink
enables seamless integration with other components of
the recommendation system architecture, facilitating data
exchange and interoperability across different modules or
services.

7. Architecture

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 05 | May 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 701

8. Key Challenges in Real Time Recommendations
and how to solve them

8.1. Cold Start Problem: When a new user accesses the

application, the recommendation system lacks sufficient
data about their preferences or interactions. This issue,
known as the cold start problem, hampers the system's
ability to provide personalized recommendations. To
mitigate this challenge, the system can resort to various
strategies:

Fallback on Item-Based Recommendations. In the
absence of user-specific data, the system can rely on item-
based information to make recommendations. This
involves suggesting items that are popular or similar to
those frequently accessed by other users.

Utilization of Generic Information. Leveraging generic
data from browser-related metadata, such as location or
device type, can help personalize recommendations to
some extent. By inferring user preferences based on
demographic or contextual information, the system can
provide initial recommendations tailored to the user's
likely interests.

8.2. Sparse Interactions: Limited user interactions pose a

challenge in gathering sufficient data to make accurate
recommendations. Sparse interactions hinder the system's
ability to understand user preferences and effectively
personalize recommendations. To address this challenge,
the system can adopt several strategies:

Content-Based Recommendations. By analyzing the
attributes of items and comparing them to user
preferences, the system can make recommendations based
on content similarity. This approach reduces reliance on
user interactions and enhances recommendation accuracy,
particularly in scenarios with sparse user data.

Implicit Feedback Modeling. Instead of relying solely on
explicit user interactions (e.g., ratings or reviews), the
system can incorporate implicit feedback signals such as
clicks or dwell time. By inferring user preferences from
implicit signals, the system can mitigate the impact of
sparse interactions and improve recommendation quality.

8.3. Large Volumes of Streaming Data / Noisy Data for
Real-Time Interactions: Handling large volumes of

streaming data and dealing with noise present significant
challenges in real-time recommendation systems. The
influx of data can overwhelm the system and introduce
inaccuracies in recommendations. To address this
challenge, the system can implement the following
strategies:

Streamlining Data Processing Pipelines. Optimizing
data processing pipelines can improve the system's ability
to handle large volumes of streaming data efficiently.
Techniques such as parallel processing, distributed
computing, and stream buffering can enhance scalability
and performance.

Noise Reduction Techniques. Implementing noise
reduction techniques such as data filtering, outlier
detection, and anomaly detection can help improve data
quality and minimize the impact of noisy data on
recommendation accuracy. By identifying and mitigating
noisy data, the system can enhance the reliability of real-
time recommendations.

8.4. Data Skew: Data skew, characterized by uneven

distribution of data across partitions or processing nodes,
can introduce performance bottlenecks and affect the
scalability of real-time recommendation systems. To
mitigate data skew challenges, the system can adopt the
following approaches:

Partitioning and Load Balancing. Implementing effective
data partitioning strategies and load balancing techniques
can distribute data evenly across processing nodes or
partitions. By evenly distributing the workload, the system
can alleviate data skew issues and improve system
performance.

Dynamic Scaling. Employing dynamic scaling
mechanisms that automatically adjust resource allocation
based on workload fluctuations can help address data
skew challenges. By dynamically scaling resources in
response to changing data distribution patterns, the
system can maintain optimal performance and scalability.

9. Data Quality in Recommendation Systems

The quality of data has a major impact in avoiding “trust
busters” and improving recommendations. During the
design of the feature store three important factors can be
taken into account while evaluating which features or
dimensions to include 1) timeliness 2) coverage 3)
accuracy. Essentially data completeness per item, per user
and per feature can be considered before
productionalizing the feature store. A highly diverse
feature set may not positively influence the
recommendations. In addition to the quantitative
measures, it is also critical to gather qualitative feedback
from users about their satisfaction with the
recommendations. This can be done through user surveys,
interviews, or user testing sessions.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 05 | May 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 702

10. Conclusion

Sophisticated recommendation systems will be built
incorporating more context like location, time and even
knowing the users current mood. There are many more
ideas that are yet to be tried like conversational
recommendations while searching for movies to watch or
simply having a robot cook your favorite meal. There is
growing awareness of the significance of fairness and bias
in recommendation systems and systems that detect bad
data can help in generating more equitable
recommendations.

REFERENCES

[1] Kartik Chandra Jena, Sushruta Mishra, Soumya Sahoo
and Brojo Kishore Mishra. 2017. “Principles, techniques
and evaluation of recommendation systems“. 2017
International Conference on Inventive Systems and
Control (ICISC). doi:10.1109/ICISC.2017.8068649

[2] T. H. Roh, K. J. Oh, and I. Han. The collaborative
filtering recommendation based on some cluster-indexing
cbr. Expert systems with applications, 25(3):413–423,
2003.

[3] S.M. Mahdi Seyednezhad, Kailey Nobuko Cozart, John
Anthony Bowllan, Anthony O. Smith. 2018. “A Review on
Recommendation Systems: Context-aware to Social-
based”. arXiv:1811.11866

[4] Matteo Marcuzzo, Alessandro Zangari, Andrea
Albarelli and Andrea Gasparetto. 2022. “Recommendation
Systems: An Insight Into Current Development and Future
Research Challenges”, IEEE Access,Volume 10, Pages
86578 - 86623, doi: 10.1109/ACCESS.2022.3194536

[5] N. Nikzad–Khasmakhi, M.A. Balafar and M. Reza Feizi–
Derakhshi. 2019. “The state-of-the-art in expert
recommendation systems”. Engineering Applications of
Artificial Intelligence Volume 82, June 2019, Pages 126-
147

[6] R. Burke. “Evaluating the dynamic properties of
recommendation algorithms”. In ACM RecSys, 2010

[7] Gediminas Adomavicius and Jingjing Zhang.2012.
“Impact of data characteristics on recommender systems
performance”. ACM Transactions on Management
Information SystemsVolume 3Issue 1Article No.: 3pp 1–17

[8] Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi
Chang, Mark A Hasegawa-Johnson, and Thomas S Huang.
2017. “Streaming recommender systems”. In Proceedings
of the 26th international conference on world wide web.
381--389

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 05 | May 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 703

Factor

Collaborative
Filtering

Content-Based
Recommendati
ons

Approach

Utilizes user-item
interactions and
user similarities to
generate
recommendations.

Focuses on item
features and
user preferences
to recommend
similar items.

Data
Requirements

Requires a large
amount of user
interaction data
(e.g., ratings,
views).

Needs detailed
information on
item attributes
and user
preferences.

Advantages

Can recommend
items without
understanding their
content.
Effective at
discovering new
interests.

Does not require
data from other
users.
Can be more
transparent in
how
recommendatio
ns are made.

Disadvantages

Suffers from cold
start problem for
new users and
items
Can be less
interpretable as it
does not consider
item content.

Limited to
recommending
items similar to
previous likes
(low
personalization).

