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Abstract - Recommendation systems are indispensable 

tools in today's digital landscape, empowering big tech 
platforms to deliver personalized experiences to users. This 
paper delves into the intricate architecture of 
recommendation systems, exploring their components, data 
requirements, and the amalgamation of batch processing 
and streaming data pipelines within the Lambda 
Architecture framework. We examine various 
recommendation models, such as collaborative filtering and 
content-based systems, shedding light on their 
methodologies and applications. Additionally, we dissect the 
workflow of recommendation systems, from candidate 
selection to real-time model serving, elucidating the 
challenges and strategies encountered at each stage. 
Through a comprehensive analysis, this paper not only 
provides insights into the current state of recommendation 
systems but also anticipates future trends and developments 
in the field. 
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1. Recommendation systems form the backbone 
of intelligent applications 

Recommendations systems have been around for more 
than a decade. However, with the advent of intelligent 
systems, personalized recommendations have become 
increasingly important to build any applications. Think of 
the last video content, post, or article you saw on your 
newsfeed, or the product you bought on Amazon, when 
you exactly didn’t know what to consume or buy, how did 
you land on your final choice? It is likely the application 
showed you relevant, similar choices that resonated with 
your nuanced preferences, knowing what you've 
previously consumed, together with what you’re currently 
exploring. Amazon’s ‘frequently bought together’, or ‘deals 
for you’ panels to TikTok’s ‘For you’ feed engaged users to 
buy their next product or follow the next creator in 
intuitive and seamless ways. However, building 
recommendation systems, especially with growing data 
volumes and ever evolving user preferences is no easy 
feat. 

Recommendation systems are essential tools for 
enhancing user experience and engagement across various 
online platforms. Understanding the intricate components 
and workflow involved in building recommendation 
systems is vital for designing effective and efficient 
solutions. This paper provides a comprehensive overview 
of these components and workflow, elucidating their 
significance in the recommendation system's architecture. 

2. Components of a recommendation system 

Whether you are building batch or real-time 
recommendation systems, there are a few components key 
to any recommendation systems. 

2.1 Input sources for recommendation 
systems 

Input Source 1: Near Real Time Data Source. When 

users interact with specific items, their actions provide 
valuable insights to recommendation systems, enabling 
personalized recommendations. Various interactions such 
as browsing history, watched content, searched items, 
purchases, likes, dislikes, clicks, and time spent engaging 
with content all contribute to understanding how, what, 
and when users interact with different items. These 
interactions are captured and stored in user logs, which 
are ingested into asynchronous processing systems like 
Apache Kafka. This allows our near-real-time processing 
pipeline to further clean, process, and feed the data into an 
online machine learning model. 

Input Source 2: Offline Data Source. To achieve highly 

available, read-heavy data storage for offline data, 
Cassandra can be a suitable choice due to its distributed 
architecture and ability to handle large volumes of read 
requests efficiently. Here's how Cassandra can be utilized 
for storing the two types of data mentioned. 

       Items or Content: Cassandra can store the entire 
inventory of products or content along with their 
metadata. Each item can be represented as a row in a 
Cassandra table, with columns representing different 
attributes such as title, description, categories, genres, 
themes, images, popularity scores, etc. 
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The rich metadata associated with each item enables 
personalized recommendations. Cassandra's ability to 
handle large amounts of data makes it suitable for storing 
this comprehensive inventory. 

With Cassandra's ability to scale horizontally, it can 
accommodate the growing inventory of items in 
ecommerce or content applications efficiently. 

        User Preferences: Cassandra can also store user 
preferences and dynamic behavior data. Each user's 
preferences, browsing behavior, tastes, attributes, etc., can 
be stored as rows in Cassandra tables. 

Real-time updates to user preferences can be handled by 
Cassandra's ability to support writes at scale. As users 
interact with the system, their preferences can be updated 
in real-time, ensuring that the recommendation engine 
always has the latest data to work with. 

Cassandra's distributed nature ensures high availability 
and fault tolerance, crucial for handling dynamic and 
unpredictable user behavior effectively. 

3. Additional factors influencing 
recommendation systems 

Seasonality Effects. Seasonal trends impact 

recommendation relevance, requiring consideration in the 
recommendation algorithm to align suggestions with user 
interests. 

Contextual Data. Geographic, temporal, and social 

context significantly influence recommendation outcomes, 
necessitating the incorporation of contextual data for 
personalized recommendations. 

Personal factors. Every person is unique with a variety of 

interests that change over time and mood-dependent and 
also the ability to accept or reject recommendations which 
feeds back into the inference model. 

4. Recommendation Models 

Collaborative filtering: Seasonal trends impact 

recommendation relevance, requiring consideration in the 
recommendation algorithm to align suggestions with user 
interests. 

Context based systems. Here, the models analyze user 

interactions and item features (genre, style) to 
recommend items similar to user's past preferences, 
focusing on individual taste rather than user relationships. 

Hybrid Approaches. Many recommendation systems 

combine collaborative filtering and content-based 

methods, along with advanced techniques like deep 
learning, to enhance recommendation accuracy. 

Cosine Similarity and Cosine Distance. Cosine similarity 

is widely used in recommendation systems to find out 
whether two documents, datasets, images are semantically 
similar making vector search queries more efficient. 

5. Workflow of Recommendation Systems 

Candidate Selection: For a given request, either in 

context of recommendations for specific item and user 
(like others you may like on a  product detail page), or in 
context of the entire page (home page recommendations), 
the model starts with sourcing the recommended items. 
This is generated from all the possible sources of items, 
considering user interest and item-user affinity. 

Ranking Recommendations: The outputs of candidate 

selection will be a large list of unranked product items that 
can be possible recommendations. Ranking requires 
scoring each candidate and sorting them, typically done 
through large neural networks optimized for positive 
engagement, revenue maximization, likes or clicks. The 
outcome is dependent on the model objectives, whether it 
is to engage users, spend more time on the site or upsell 
higher priced items. 

Filtering and Product features: Once the top 5-10 

recommendations are served, most recommendation 
systems need filtering to serve business logic. Whether it 
is boosting certain promotional items, or filtering out the 
out of stock items, the product features are usually 
completed in post-processing. Heuristics like diverse 
content or social proof are common to incorporate here. 

In ecommerce systems, the recommendation models take 
the form of ‘Frequently bought together’ that is typically 
shown on checkout and add-to-cart pages, while ‘Others 
you may like’ and ‘Recommended for you’ are in the 
product detail page. The homepage has models like 
‘Trending’, ‘Best sellers’, ‘Top deals’ that have a broader 
appeal. 

In content recommendation systems, the homepage 
models include ‘For You’, while in-feed models may 
include ‘Similar to this post’ or ‘Other titles like this’. 

6. Real Time Model Serving System 

In our recommendation system architecture, Apache Flink 
plays a pivotal role in processing user interaction data in 
real-time. This data is sourced from the organization's 
logging system, which captures input from users across 
various touchpoints. Upon ingestion into Apache Kafka, 
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the data stream is then consumed by Apache Flink for 
further processing and enrichment. 

Apache Flink executes three major tasks as part of its real-
time processing pipeline. 

Windowing based on event time: Apache Flink utilizes 

event time windowing techniques to organize and process 
data streams based on the timestamps associated with 
each event. This approach enables the system to 
effectively manage and analyze data within specific time 
intervals, facilitating tasks such as data cleaning, 
normalization, and deduplication. By partitioning data into 
windows, Apache Flink ensures that data processing 
operations are performed efficiently and accurately, 
leading to improved data quality and reliability. 

 

 

 

 

 

 

 

 

 

 

Asynchronous IO calls to Item Service and User 
preferences service: Apache Flink interacts 

asynchronously with external services, such as the Item 
Service and User Preferences Service, to retrieve 
additional metadata and dynamic behavior data related to 
items and user preferences. These IO calls enable the 
system to enrich the raw data stream with valuable 
contextual information, enhancing the quality and 
relevance of recommendations generated by the system. 
By leveraging external services in an asynchronous 
manner, Apache Flink ensures that data processing 
operations remain efficient and non-blocking, thereby 
minimizing latency and maximizing throughput. 

Sink Data to Kafka: Once data processing and enrichment 

tasks are completed, Apache Flink sinks the processed 
data back into Apache Kafka for further consumption or 
storage. This final step ensures that the enriched data is 
seamlessly integrated back into the streaming pipeline, 
making it available for downstream applications or 
systems. By leveraging Kafka as a data sink, Apache Flink 
enables seamless integration with other components of 
the recommendation system architecture, facilitating data 
exchange and interoperability across different modules or 
services. 

7. Architecture 
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8. Key Challenges in Real Time Recommendations 
and how to solve them 

8.1. Cold Start Problem: When a new user accesses the 

application, the recommendation system lacks sufficient 
data about their preferences or interactions. This issue, 
known as the cold start problem, hampers the system's 
ability to provide personalized recommendations. To 
mitigate this challenge, the system can resort to various 
strategies: 

Fallback on Item-Based Recommendations. In the 
absence of user-specific data, the system can rely on item-
based information to make recommendations. This 
involves suggesting items that are popular or similar to 
those frequently accessed by other users. 

Utilization of Generic Information. Leveraging generic 
data from browser-related metadata, such as location or 
device type, can help personalize recommendations to 
some extent. By inferring user preferences based on 
demographic or contextual information, the system can 
provide initial recommendations tailored to the user's 
likely interests. 

8.2. Sparse Interactions: Limited user interactions pose a 

challenge in gathering sufficient data to make accurate 
recommendations. Sparse interactions hinder the system's 
ability to understand user preferences and effectively 
personalize recommendations. To address this challenge, 
the system can adopt several strategies: 

Content-Based Recommendations. By analyzing the 
attributes of items and comparing them to user 
preferences, the system can make recommendations based 
on content similarity. This approach reduces reliance on 
user interactions and enhances recommendation accuracy, 
particularly in scenarios with sparse user data. 

Implicit Feedback Modeling. Instead of relying solely on 
explicit user interactions (e.g., ratings or reviews), the 
system can incorporate implicit feedback signals such as 
clicks or dwell time. By inferring user preferences from 
implicit signals, the system can mitigate the impact of 
sparse interactions and improve recommendation quality. 

8.3. Large Volumes of Streaming Data / Noisy Data for 
Real-Time Interactions: Handling large volumes of 

streaming data and dealing with noise present significant 
challenges in real-time recommendation systems. The 
influx of data can overwhelm the system and introduce 
inaccuracies in recommendations. To address this 
challenge, the system can implement the following 
strategies: 

Streamlining Data Processing Pipelines. Optimizing 
data processing pipelines can improve the system's ability 
to handle large volumes of streaming data efficiently. 
Techniques such as parallel processing, distributed 
computing, and stream buffering can enhance scalability 
and performance. 

Noise Reduction Techniques. Implementing noise 
reduction techniques such as data filtering, outlier 
detection, and anomaly detection can help improve data 
quality and minimize the impact of noisy data on 
recommendation accuracy. By identifying and mitigating 
noisy data, the system can enhance the reliability of real-
time recommendations. 

8.4. Data Skew: Data skew, characterized by uneven 

distribution of data across partitions or processing nodes, 
can introduce performance bottlenecks and affect the 
scalability of real-time recommendation systems. To 
mitigate data skew challenges, the system can adopt the 
following approaches: 

Partitioning and Load Balancing. Implementing effective 
data partitioning strategies and load balancing techniques 
can distribute data evenly across processing nodes or 
partitions. By evenly distributing the workload, the system 
can alleviate data skew issues and improve system 
performance. 

Dynamic Scaling. Employing dynamic scaling 
mechanisms that automatically adjust resource allocation 
based on workload fluctuations can help address data 
skew challenges. By dynamically scaling resources in 
response to changing data distribution patterns, the 
system can maintain optimal performance and scalability. 

9. Data Quality in Recommendation Systems 

The quality of data has a major impact in avoiding “trust 
busters” and improving recommendations. During the 
design of the feature store three important factors can be 
taken into account while evaluating which features or 
dimensions to include 1) timeliness 2) coverage 3) 
accuracy. Essentially data completeness per item, per user 
and per feature can be considered before 
productionalizing the feature store. A highly diverse 
feature set may not positively influence the 
recommendations. In addition to the quantitative 
measures, it is also critical to gather qualitative feedback 
from users about their satisfaction with the 
recommendations. This can be done through user surveys, 
interviews, or user testing sessions.  
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10. Conclusion 

Sophisticated recommendation systems will be built 
incorporating more context like location, time and even 
knowing the users current mood. There are many more 
ideas that are yet to be tried like conversational 
recommendations while searching for movies to watch or 
simply having a robot cook your favorite meal. There is 
growing awareness of the significance of fairness and bias 
in recommendation systems and systems that detect bad 
data can help in generating more equitable 
recommendations. 
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Factor 
 

Collaborative 
Filtering 

Content-Based 
Recommendati
ons 

Approach 

Utilizes user-item 
interactions and 
user similarities to 
generate 
recommendations. 

Focuses on item 
features and 
user preferences 
to recommend 
similar items. 

Data 
Requirements 

Requires a large 
amount of user 
interaction data 
(e.g., ratings, 
views). 

Needs detailed 
information on 
item attributes 
and user 
preferences. 

Advantages 

Can recommend 
items without 
understanding their 
content. 
Effective at 
discovering new 
interests. 

Does not require 
data from other 
users. 
Can be more 
transparent in 
how 
recommendatio
ns are made. 

Disadvantages 

Suffers from cold 
start problem for 
new users and 
items 
Can be less 
interpretable as it 
does not consider 
item content. 

Limited to 
recommending 
items similar to 
previous likes 
(low 
personalization). 

 
 

 


