
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 502

Data Acquisition Using Camera Serial Interface

Diksha Sagar1, Dr. Jeeru Dinesh Reddy2

1PG Student, Dept. of Electronics and Communication Engineering, BMS College of Engineering, Bengaluru, India
2Professor, Dept. of Electronics and Communication Engineering, BMS College of Engineering, Bengaluru, India

---***---
Abstract - Reaching high integration, high speed, high
resolution, and high reliability is the aim of image
preprocessing systems. Image processing systems are widely
employed in both the military and commercial industries.
Image processing technology-based object detection has
drawn a lot of interest in the military because of its
noncontact capabilities, capacity to hide, and ability to avoid
interference. In the business sector, it is widely used in
industrial detection systems and machine vision. There are
three main kinds of image processing systems that are used to
implement digital image processing techniques. The three
main chips that comprise each system are the FPGA (Field
Programmable Gate Array), DSP (Digital Signal Processor
chip), and ASIC (Application Specific Integrated Circuit). In
this work, we created an image processing system based on
FPGA. The system can take samples from the data stream.

Key Words: FPGA, Image acquisition system, Image
processing, Xilinx Vivado HLS, MATLAB, Verilog.

1. INTRODUCTION

Artificial intelligence, pattern recognition, and signal
processing are all engaged in the study of picture collection
and processing, which has been a popular area of research.
This technology is mainly used in automotive electronics,
consumer electronics, security monitoring, national defence,
and other fields of 3D projection. The increasing popularity
of digital image processing technology is inseparable from
the perfecting of processing systems. In the image processing
system, the key technology is real-time image acquisition
and processing. Meanwhile, the speed and quality of image
acquisition directly affect the system [10]. The advancement
of large-scale integrated circuit fabrication technologies,
particularly FPGA, and microelectronics has produced
innovative concepts and techniques for enhancing the
functionality of image processing systems in recent years.
The image processing system based on FPGA is widely
utilized in the image preprocessing area because of the vast
amount of data and rapid processing speed required for low-
level picture preprocessing. The need for video information
has increased as a result of the advancements made in
multimedia technologies in recent years. In any case, the
significance of picture processing and capture is growing. 8-
bit standard RGB (sRGB) pictures, which are commonly
compressed using the JPEG standard, make up the great
majority of images used in computer vision and image
processing applications. The processes of almost all imaging

applications support JPEG and sRGB picture formats. These
days, the majority of cameras enable the saving of photos in
RAW format, which is an unprocessed, minimally
compressed picture format that captures the reaction from
the camera sensor. More benefits of RAW over sRGB include
a broader color gamut, a higher dynamic range (usually 12–
14 bits), and a linear response to scene radiance. For several
computer vision applications, including white balance,
photometric stereo, picture restoration, and more, RAW is
preferred. Photographers also prefer RAW because it gives
them more versatility when manipulating images in post-
processing. The serial process of compression of images
starts with the conversion of an RGB image into YIQ if
required. The resulting image is then transformed by DCT. In
the quantization, unnecessary data about the image is
eliminated from size and quality. Encoding of the image is
done for protection by changing the names of the values of
the quantized image by passing the image into the channel
encoder. The image is involved in inverse quantization,
which retrieves the lost data from the image. Passing
through the inverse transformation phase forms the original
image. Image compression is a technique that lowers the
amount of data needed to communicate with an advanced
image. And eliminating the redundant workers will provide
this.

Operation of the JPEG Encoder core:

1.1 Color Space Transformation

The first operation of the JPEG Encoder core is
converting the red, green, and blue pixel values to their
corresponding Luminance and Chrominance (Y, Cb, and Cr)
values. The RGB2YCBCR module is where this procedure is
carried out. The operation is based on the following
formulas:

Y = .299 * Red + .587 * Green + .114 * Blue

Cb = -.1687 * Red + -.3313 * Green + .5 * Blue + 128

Cr = .5 * Red + -.4187 * Green + -.0813 * Blue + 128

Fixed point multiplications are used to carry out these
tasks. All of the constant values in the above 3x3 matrix are
multiplied by 2^14 (16384). One clock cycle is used for the
multiplications, and the next clock cycle is used to add the
sum of the products. In order to obtain a quick

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 503

clock frequency during synthesis, this is done. Next, rather
than really dividing the sums, the sums are divided by 2^14,
which is accomplished by throwing away the 14 LSBs of the
sum values. When rounding, the 13th LSB is examined, and if
it is 1, 1 is added to the total.

1.2 Discrete Cosine Transform

The next step after calculating the Y, Cb, and Cr values is
performing the Discrete Cosine Transform (DCT). This is
commonly referred to as a 2D DCT. The actual formula is the
following:

DY = T * Y * inv(T)

T is the DCT matrix. Y is the matrix of Y values for the
8x8 image block. DY is the resultant matrix after the 2D DCT.
The DCT needs to be performed separately on the Y, Cb, and
Cr values for each block. The DCT of the Y values is
performed in the y_dct module. The cb_dct and cr_dct
modules contain the DCT of the Cb and Cr values. Since the
cb_dct and cr_dct modules are nearly identical, I will just
discuss the y_dct module in this section.

Now you may have noticed that I have not centered the Y,
Cb, and Cr values on 0 in the previous stage. To do that, I
would have subtracted 128 from the final Y value, and not
added the 128 to the final Cb and Cr values. To perform the
DCT, the values of Y, Cb, and Cr need to be centered around 0
and in the range –128 to 127. However, I perform a few
tricks in the DCT module that allow me to keep the Y, Cb, and
Cr values in the range from 0-255. I do this because it makes
the implementation of the DCT easier.

The DCT matrix, or T as I call it, is multiplied by the
constant value 16384 or 2^14. The rows of the T matrix are
orthonormal (the entries in each row add up to 0), except for
the first row. Because the rows 2-8 are orthonormal, it does
not matter that I have not centered the Y values on 0. I
perform the multiplication of the T rows by the Y columns of
data, and the extra 128 in each of the Y values is cancelled
out by the orthonormal T rows. The first row, however, is
not orthonormal - it has a constant value of .3536, or 5793
after it is multiplied by 2^14. Since I have not centered Y by
0, the extra 128 in each value will result in an extra
128*8*5793 = 5932032 in the final sum. So to make up for
the fact that I have not centered the Y values on 0, I subtract
5932032 from the result of the first row of T multiplied by
each of the 8 columns of the Y matrix. If you think about this,
it means I have to perform a total of 8 subtractions for an
8x8 matrix of Y values. If I had subtracted 128 from each Y
value before the DCT module, I would have needed to
perform a total of 64 subtractions.

After multiplying the T matrix by the Y matrix, the
resulting matrix is multiplied by the inverse of the T matrix.
In order to maximize the clock frequency for the design, this
procedure is carried out in the code. The result is the code

may look overly confusing, but I tried many different
schemes before settling on the one used in the code. I would
simulate the code, make sure it functioned, and then
synthesize to see what clock speed I could get. I kept doing
this until I eventually found the optimal clock speed, which
was about 300 MHz. I targeted a Xilinx Virtex 5 FPGA to
achieve this speed.

1.3 Quantization

The next step is fairly straightforward. The module
y_quantizer comes next for the Y values. The Cb and Cr
values go through the cb_quantizer and cr_quantizer
modules. The 64 quantization values are stored in the
parameters Q1_1 through Q8_8. I used finals values of 1 for
my core, but you could change these values to any
quantization you want. I simulated different quantization
values during testing, and I settled on values of 1,
corresponding to Q = 100, because this stressed my code the
most and I was trying to break the core in my final testing.
The core did not break, it worked, but I left the quantization
values as they were.

As in previous stages, I avoid performing actual division
as this would be an unnecessary and burdensome calculation
to perform. I create other parameters QQ1_1 through QQ8_8,
and each value is 4096 divided by Q1_1 through Q8_8. For
example, QQ1_1 = 4096 / Q1_1. This division is performed
when the code is compiled, so it doesn’t require division in
the FPGA.

The input values are multiplied by their corresponding
parameter values, QQ1_1 through QQ8_8. Then, the bottom
12 bits are chopped off the product. This gets rid of the
4096, or 2^12, that was used to create the parameters QQ1_1
through QQ8_8. The final values are rounded based on the
value in the 11th LSB.

1.4 Huffman Encoding

The module y_huff performs the Huffman encoding of the
quantized Y values coming out of the y_quantizer module.
The modules cb_huff and cr_huff perform the Huffman
encoding for the Cb and Cr values. The module yd_q_h
combines the y_dct, y_quantizer, and y_huff modules. The
values from y_quantizer are transposed (rows swapped with
columns) as they are input to the y_huff module. This is
done so that the inputs of each 8x8 block to the top module,
jpeg_top, can be written in the traditional left to right order.
Peforming the DCT requires matrix multiplication, and the
rows of the T matrix are multiplied by the columns of the Y
matrix. So the Y values would need to be entered in a
column format, from top to bottom, to implement this.
Instead, the Y values can be entered in the traditional row
format, from left to right, and then by transposing the values
as they pass between the y_quantizer and y_huff modules,
the proper organization of Y values is regained.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 504

The Huffman table can be changed by changing the
values in this module – the specific lines of code with the
Huffman table are lines 1407-1930. However, the core does
not allow the Huffman table to be changed on the fly. You
will have to recompile the code to change the Huffman table.
You should create a full Huffman table, even if you have a
small image file and do not expect to use all of the Huffman
codes. The calculations in this core may differ slightly from
how you do your calculations, and if you use a Huffman table
without all of the possible values defined, the core may need
a Huffman code that is not stored in the RAM, and the result
will be an incorrect bitstream output.

The DC component is calculated first, then the AC
components are calculated in zigzag order. The output from
the y_huff module is a 32-bits signal containing the Huffman
codes and amplitudes for the Y values.

2. PROPOSED METHODOLOGY

Fig 1. Block Diagram of the Entire Camera Serial
Interface[10]

The procedure for taking and processing a picture is
shown in the block diagram. The process starts with the
image capture phase, which gathers visual data. The
acquired image is next subjected to Digital Conversion,
which converts it into a format that may be altered digitally.
The digitally converted image finds temporary refuge
in Temporary Storage before progressing to the Computer
Interface. This interface facilitates communication between
the computer system and imaging devices. The crucial stage
of image processing comes next, where the digital picture is
altered by applying adjustments, improvements, or other
changes. At this juncture, two divergent paths emerge:

1) Display Output: In this case, consumers may see the
finished product by viewing the processed image on a
screen.

2) Hardware Processing: As an alternative, further
hardware-level adjustments or examinations of the image
may be performed.

The workflow from taking a picture to showing the
processed result is represented by this paradigm, where
each block stands for a critical stage in the entire digital
image processing process.

Fig 2. Block Diagram

1) Raw Image:

The starting point of our journey is the Raw Image. This
represents the unprocessed visual data captured by a
camera or imaging device. It’s akin to the untouched canvas
awaiting transformation.

2) Compression:

Our next stop is the Compression stage. Here, the raw
image undergoes a crucial process. Imagine it as a digital
wardrobe organizer—compressing bulky files without
compromising quality. Compression reduces the file size,
making it more manageable for storage and transmission.

3) Memory:

Finally, our transformed image finds its home in Memory.
Think of this as a digital attic—a place where data resides
temporarily. Whether it’s RAM, hard drives, or cloud storage,
memory holds our compressed image until further action is
taken.

Image Compression:

Fig 3. Block Diagram of Compression

2.1 Raw Image:

The procedure starts with a raw picture, which is an
array of two-dimensional pixel values that represent the
color and intensity information of the image.

2.2 Image Division in 8x8 Blocks:

The raw image is divided into non-overlapping 8x8
blocks. These blocks are independent units for processing
and analysis.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 505

2.3 Discrete Cosine Transform (DCT):

Each 8x8 block is then subjected to a mathematical
transformation called the Discrete Cosine Transform (DCT).
The DCT converts the spatial information of the block into
frequency information. It represents the image data in terms
of different frequency components.

2.4 Quantization:

After the DCT, the resulting frequency coefficients are
quantized. Quantization reduces the precision of the
coefficients by dividing them by a set of quantization values.
This process discards high-frequency components and
preserves the low-frequency components, allowing for
significant compression.

2.5 Entropy Encoding:

The next step is to compress the quantized coefficients
using an entropy encoding technique (usually Huffman
coding). By using the statistical characteristics of the data,
entropy encoding assigns longer codes to less frequent
coefficients and shorter codes to more often occurring ones.
This further reduces the overall size of the encoded data.

2.6 JPEG Image:

Finally, the entropy-encoded data is combined with the
necessary header information to form the compressed JPEG
image file. The resulting JPEG image consists of a series of
compressed blocks, each containing the encoded and
quantized coefficients, along with the necessary information
for decoding and displaying the image.

Benefits of Image Compression:

It enables a reliable cost of savings that is included with
the sending of less data on the network of switched
telephones, in which the cost of a call is normally dependent
on its duration. It is not only to decrease the requirements of
storage but also to decrease the entire time of execution. It
decreases the chances of the error’s transmission. It enables
a level of security against monitoring unlawful activities.

JPEG Process:

1. Dividing the image into 8 by 8 blocks is the first stage in
the compression process.

2. While the breaking is done, we must apply the DCT to each
image.

3. Therefore, by quantization each block is get compressed.

4. The array of compressed blocks that constitute the image
gets stored by drastically reduced amount of space.

Inputs:

The top-level module, jpeg_top, manages a JPEG encoding
core with minimal inputs: clock, enable, and reset lines.
When the initial pixel's data is ready and stays high during
each 8x8 pixel block's 64-clock cycle input, the enable signal
is triggered. Following this input phase, there is no more
data received for the minimum 33 clock cycles that the
enable signal remains high. The enable signal is then quickly
lowered for one clock cycle and then raised once again for
the subsequent 8x8 block input. Red, green, and blue pixel
values are stored on the 24-bit data bus, with blue stored in
bits [23:16], green in bits [15:8], and red in bits [7:0]. At the
first clock cycle of the last 8x8 block, the end_of_file_signal
gets high, signaling that all of the bits in this final block must
be produced. The bitstream is managed via the 32-bit output
bus.

Outputs:

The JPEG bitstream is output via the 32-bit bus signal
JPEG_bitstream. The first eight bits are located at [31:24],
followed by the following eight bits at [23:16], and so on.
When the data_ready signal is high, the data in the JPEG
bitstream is legitimate. To signal genuine data, data_ready
will only be high for a single clock cycle. The signal
eof_data_partial_ready will be high for one clock cycle when
the additional bits are in the signal JPEG_bitstream on the
last block of data if the last bits do not fill the 32-bit bus. The
end_of_file_bitstream_count 5-bit signal indicates how many
additional bits there are.

3. RESULTS

A commonly used image contains redundant information
because of neighbouring pixels, which are correlated and
contain redundant information. The main objective of image
compression is to remove redundancies from an image by
removing them as much as possible while keeping the
resolution and visual quality of the compressed image as
close as possible to the original image. Compression is
further divided into predictive and transform coding.
Transform coding means that a large amount of information
is transferred into a very small number of blocks. One of the
best examples of a transformed coding technique is the
wavelet transform. Predictive means, based on the training
set (neighbours), reduce some redundancies. Context-based
compression algorithms are used as predictive techniques.

Using Verilog code, the suggested block diagram was put
into practice in hardware. The Xilinx Vivado 2018.2 version
tool was used to simulate the hardware, and an RTL
schematic for the design was produced. The Xilinx Vivado
2018.2 version tool was also utilized for the synthesis of the
design blocks. A C specification may be converted into a
register transfer level (RTL) implementation using the Xilinx
Vivado High-Level Synthesis (HLS) tool, which can then be

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 506

synthesized into a Xilinx field programmable gate array
(FPGA). With the FPGA, you may create C specifications in C,
C++, SystemC, or as an API C kernel for the Open Computing
Language (OpenCL). Its massively parallel design offers
advantages over traditional processors in terms of power,
cost, and performance. HLS makes it possible by aiming for
an FPGA as the execution fabric. This allows the
implementation of computationally intensive software
algorithms into actual products, not just functionality
demonstrators.

3.1 Software Simulation Results

Huffman Image Compression :

1) Original Image:

Fig 4. Original Image

The original image's details are as follows:

Image size : 1.45KB

 Dimensions : 225x225

 Width : 225pixels

 Height : 225pixels

Horizontal Resolution : Nil

 Vertical Resolution : Nil

 Bit Depth : Nil

 Focal Length : Nil

2) Compressed Image:

Fig 4. Compressed Image

The compressed image's details are as follows:

Image size : 0.90KB

 Dimensions : 64x64

 Width : 64pixels

 Height : 64pixels

Horizontal Resolution : 96 dpi

 Vertical Resolution : 96 dpi

 Bit Depth : 24

 Focal Length : 35mm

Fig 6. MATLAB Memory Window for RGB Image

A similar simulation is done for the coloured image in Fig.
7. using the same Huffman image compression code. It is
clear from the comparison photos that the 1.45 kb original
image has been shrunk to 0.90 kb.

3.2 Hardware RTL Schematics, Simulation and
Synthesis Results

1) RTL Schematic of the Proposed Block Diagram

Fig 7. RTL Schematic of The Proposed Block Diagram

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 507

2) Simulation Result

Fig 8. Simulation Result

3) Synthesis Result

The design blocks were synthesised using the Xilinx
Vivado 2018.2 Hlx tool. A resource utilisation table is also
given below.

Fig 10. Resource Utilisation Graph

Table -1

Fig 11. Resource Utilisation Table

4. CONCLUSIONS

We proposed an efficient method to process JPEG images by
converting them to grayscale and then to PNG using
MATLAB. Image compression reduces memory usage.
Identifying data patterns is crucial for effective compression.
Implementing image processing on an FPGA involves
systematic steps, including camera selection, FPGA choice,
and HDL programming. The FPGA synthesis and
implementation processes, along with configuration and

testing, are crucial for ensuring the successful integration of
the designed system.

REFERENCES

[1] Xin Liu, Ling Li, “ FPGA-based Three- dimensional
endoscope system using a single CCD camera,” IEEE,
2015.

[2] B.A.S.A. Thilakaratne, W.A.S. Wijesinghe, “FPGA Based
Camera Interface For Real Time Video Processing,”
2015.

[3] Sanjay Kumar Gupta, “An Algorithm For Image
Compression Using Huffman Coding Techniques,”
IJARSE, Vol. No. 5, Issue No. 07, July 2016.

[4] Shammi Rahangdale, Paul Keijzer, P.Kruit, “MBSEM
Image Acquisition and Image Processing in Lab View
FPGA,” IWSSIP, 2016.

[5] Ravi B. Humane, Prof. A. R. Askhedkar, “ Sensors
Interfacing on Re-configurable Platform using FPGA in
IoT environment, “IJIRSET, Vol. 5, Issue 9, Sepetember
2016.

[6] WANG Rong-yang, Lu Bo, Qian Zhen-hue, “Real-time
Mechanical Parking Equipment Image Acquisition and
Preprocessing Based on FPGA,” ICCA, 2016.

[7] S.M. Dominguez-Nicolas, P. Argiielles-Lucho,
P.Wiederhold, “FPGA based image acquisition and
graphic interface for hardness tests by indentation,”
ISSN, 2016.

[8] Ms. Sonal R. Lad1, Prof. P.C. Bhaskar2, “Acquisition
Board Design Based on Arm and FPGA for Image Data,”
IJIREEICE, Vol. 4, issue 6, June 2016.

[9] Naga Raju Boyal, Vijay Kumar Jindel, Bala
Venkateswarlu Avvaru2, Sreelekha Kande3 and
Ramanjappa Thogata, “Design and Development of FPGA
Based Image Acquisition System,” ISSN, 2017.

[10] Rui Lu1, Xiaohui Liu1, Xiaodan Wang2, Jin Pan1, Kuangyi
Sun1 and Hellen Waynes, “The Design of FPGA-based
Digital Image Processing System and Research on
Algorithms,” ISSN: 2233-7857 Vol. 10, No.2, IJFGCN,
2017.

[11] Rang M.H. Nguyen1, Michael S. Brown, “RAW Image
Reconstruction Using a Self-contained sRGB-JPEG Image
with Small Memory Overhead,” Springer, 2017.

[12] Himanshu Shekhar1, Hitesh Pant2, Ritanshu Tyagi3,
Abhigyan Singh4, “Huffman Coding Based Lossless
Image Compression, “IJARIIE-ISSN(O), Vol. No. 4, Issue
05, 2018.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 508

[13] Hao Wang, Zhi Weng, Yan Li, “Design of high-speed
image acquisition system based on FPGA,” IEEE, 2018.

[14] Si Yong Fu, “Design of High Speed Data Acqusition
System for Linear Array CCD Based on FPGA,” ICMIR,
2019.

[15] V.R.Balaji1, J.Sathiya Priya, J.R.Dinesh Kumar, “FPGA
Implementation of Image Acquisition in Marine
Environment,” ISSN: 0973-2667 Vol. No. 13, Number 2,
2019.

[16] Rohit Raj1, Navneet Singh2, “A Review-FPGA based
Architectures for Image Capturing Consequently
Processing and Display using VGA Monitor,” IRJET
Volume 07, issue 01, Jan 2020.

[17] Prashant Kharat, Vaibhav Mapari, Dr. Amol Bhatkar,
“Digital Camera Deactivation By Using IR Based Image
Processing Technique,” IJSRST Vol. 5, issue 6, 2020.

[18] Sharan Reddy Ayiluril, Sampath Kumar Yelchuri2, Vusa
Laxumudu3, Gorrepati Praveeen Sajan4, Arvapalli
Yaswanth Pavan Kumar5, Kulraj Kaur6, “JPEG Image
Compression Using MATLAB,” www.irjmrts.com, Vol.
No. 3, Issue No. 05, May 2021.

[19] Aleksander Mielczarek 1, Dariusz Radoslaw Makowski 1,
Christopher Gerth 2, Bernd Steffen 2, Michele Caselle 3
and Lorenzo Rota 33,4, “Real-Time Data Acquisition and
Processing System for MHz Repetition Rate Image
Sensors,” MDPI, 2021.

[20] Eduardo Magdaleno 1, Manuel Rodriguez Valido 1, David
Hernandez 2,3, Maria Balaguer 4, Basilio Ruiz Cobo 2,3
and David Diaz 1, “FPGA Implementation of Image
Ordering and Parking Algorithm for TuMag Camera,”
MDPI, 2021.

[21] https://www.xilinx.com/support/documentation-
navigation/design hubs/dh0012-vivado-high-level-
synthesis-hub.html.

http://www.irjmrts.com,/
https://www.xilinx.com/support/documentation-navigation/design
https://www.xilinx.com/support/documentation-navigation/design

