
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1421

HIGH PERFORMANCE PARALLEL STREAMING BASED HYBRID HUFFMAN

ENCODER

Assistant Professsor
Department of ECE

Seshadri Rao Gudlavalleru
Engineering College, Gudlavalleru

UG Student
Department of ECE

Seshadri Rao Gudlavalleru
Engineering College, Gudlavalleru

 UG Student
 Department of ECE
 Seshadri Rao Gudlavalleru

 Engineering College,
Gudlavalleru

encoding technique, which effectively reduces input strings
of eight bits into far fewer bits often down to only one bit or
more. The two primary parts of this method are a Huffman
block and a frequency sorting block. The frequency sorting
block sends the sorted data to the Huffman encoder by
arranging the input strings in ascending order according to
their frequency and ASCII values. Every byte in the Huffman
block is encoded into less than 8 bits; in the worst situation,
a single byte might be compressed into as low as 1 bit. In
order to illustrate the compression of these values, this work
concentrates on processing 64 bits of data, or 8 string values.

Keywords–Huffman encoding, Compression, Frequency
Sorting, ASCII values, Data Processing.

I.INTRODUCTION

Huffman encoding is a well-known method for
significantly reducing the quantity of input data while
maintaining its frequency order that is used in many
networking applications and routers. Sorting the input data
right before feeding it into the Huffman block ensures a
greater compression ratio and optimal data accuracy. In
order to lessen the drawbacks of current devices, this work
presents a high-throughput VLSI design for Huffman
encoding that is based on the conventional/canonical
Huffman encoder.

A mainstay of data compression, Huffman encoding
provides a potent way to reduce the size of data payloads
across a variety of networking platforms and devices.
Huffman encoding becomes a vital technique for attaining

ideal data compression while preserving critical information
integrity as the need for effective data transmission and
storage in contemporary communication systems grows.
Huffman encoding reduces the total bitstream size by
assigning shorter codes to symbols that appear more
frequently by using the frequency distribution of symbols
within a dataset.

The use of Huffman encoding becomes especially
important in the context of networking technologies and
routers, where bandwidth and memory resources are
frequently constrained. Huffman encoding enables higher
throughput and lower latency in data transfer by
compressing data payloads without sacrificing important
information. Additionally, Huffman encoding facilitates
prioritized transmission by grouping data according to
symbol frequency, guaranteeing that important data is given
priority throughout data transfer procedures.

Huffman encoding, however, has major benefits in
terms of data compression and transmission efficiency;
nonetheless, its implementation can be difficult, especially in
terms of throughput and hardware complexity. The usability
of conventional Huffman encoder designs in contemporary
networking contexts may be limited by their inability to fulfil
the needs of high-speed data processing. Furthermore,
inefficiencies in current implementations might lead to less-
than-ideal compression ratios and more processing
overhead.

In order to overcome these obstacles and improve
Huffman encoding efficiency in networking applications, a
unique high-throughput VLSI design for Huffman encoding is

UG Student

Department of ECE

Seshadri Rao Gudlavalleru

 Engineering College, Gudlavalleru

 UG Student
 Department of ECE
Seshadri Rao Gudlavalleru

Engineering College, Gudlavalleru

Namburi Sambamurthy Talabattula Harish Yarramsetti Jagadeep

Yadala Prashanth Dasari Satya Prabhas

--***---

Abstract—The Huffman encoder uses the Huffman

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1422

proposed in this research. The suggested design seeks to
address the limitations of current devices by providing
increased throughput, less hardware complexity, and greater
compression efficiency. It draws inspiration from both
conventional and canonical Huffman encoding approaches.
The suggested architecture's effectiveness and performance
advantages are shown through in-depth study and
experimental validation, underscoring its potential to
completely transform networking technologies' use of data
compression.

1.1Motivation

 Effective data compression methods are
desperately needed in networking technologies, which is
what spurred this research. High-throughput Huffman
encoder designs are essential given the exponential
expansion of data transmission and the limitations of finite
bandwidth and memory resources. Current implementations
might not be able to match these needs, which would result
in higher processing overhead and less than ideal
compression ratios. The goal of this study is to improve
throughput, lower hardware complexity, and increase
compression efficiency by presenting a unique VLSI design
for Huffman encoding. The ultimate goal of this effort is to
push data compression for networking applications closer to
the state-of-the-art.

1.2 Objectives:

1. Create a Huffman encoding high-throughput VLSI
architecture that satisfies the demands of contemporary
networking technologies.

2. Optimize the suggested design to reduce hardware
complexity and get better compression efficiency.

3. To satisfy the demands of high-speed data processing in
networking contexts, improve the Huffman encoder's
throughput capabilities.

4. Use in-depth research and testing to verify the suggested
architecture's performance against other Huffman encoder
implementations already in use.

5. Describe the practical ramifications and possible uses of
the suggested design to improve networking system
transmission efficiency and data compression.

1.3 Existing System:

 There are, in fact, a number of approaches and
modifications in the field of Huffman encoding, each having
advantages and disadvantages of its own. By mapping input
symbols directly to variable-length codewords using hash

functions, hash encoding, for instance, eliminates the
requirement to build a Huffman tree based on symbol
frequencies. Compared to classic Huffman encoding, hash
encoding may be more difficult to obtain ideal compression
ratios, especially for datasets with skewed symbol
distributions.

 Fig1:Existing System

 Nevertheless, it can provide simplicity and perhaps
quicker encoding and decoding times.Some Huffman
encoding implementations could build the Huffman tree
straight from the input data by using techniques like
adaptive algorithms or dynamic programming, doing away
with the explicit sorting of symbols based on frequency.
While these techniques could be beneficial in some
situations, including real-time data processing or streaming
applications, they may also introduce additional
computational complexity and overhead.

Whether to use frequency-sorted Huffman encoding, hash
encoding, or classic Huffman encoding relies on a number of
criteria, such as the application or system's unique needs, the
desired compression ratio, and the properties of the input
data. Identifying and comprehending the trade-offs between
these various techniques is crucial to creating effective and
efficient data compression solutions that meet the
requirements of various networking scenarios.

II.RELATED WORK

 In their work, Sarkar, Sarkar, and Banerjee offer a
unique method of data compression. They suggest using
Huffman coding, a well-known compression method, to
efficiently shrink the size of big data arrays[2]. They hope to
obtain substantial storage requirements reductions while
maintaining the integrity of the dataset by implementing
Huffman coding. In the context of contemporary computing
and communication systems, where big datasets are typical
and effective data management is essential, this strategy is
especially pertinent. The implementation specifics,
performance assessment, and possible uses of their
innovative technique are probably covered in the article,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1423

which offers insightful information on the suitability and
effectiveness of using Huffman coding for complex data
compression jobs.

 A unique VLSI architecture designed for high-throughput
encoding of canonical Huffman codes is presented by Shao et
al. focuses on the requirement for effective hardware
Huffman encoding implementations, which is essential for
many applications including data compression and
communication systems[4]. The suggested architecture
seeks to maximize throughput performance while reducing
hardware complexity by concentrating on canonical Huffman
codes, which provide streamlined encoding and decoding
procedures. The authors most likely describe in depth the
design process, optimisation strategies, and performance
assessment of their architecture, showcasing how well it
meets the demands of real-time data processing.

 Canonical Huffman coding is investigated by Khaitu and
Panday as a method of picture compression[5]. The work,
which was published in the conference proceedings,
probably explores the use of canonical Huffman coding,
which provides a more straightforward encoding and
decoding procedure than conventional Huffman coding
methods. The authors want to show how canonical Huffman
coding might reduce digital picture storage needs without
sacrificing image quality by concentrating on image
compression.

 It is probable that Xilinx offers recommendations and
best practices for designing protocol processing systems
using Vivado High-Level Synthesis [7]. Given that Xilinx is a
well-known supplier of FPGA technology, it is likely that this
article provides information on how to effectively perform
protocol processing tasks on FPGA platforms by utilizing
Vivado HLS, a tool that transforms high-level language
descriptions into RTL (Register Transfer Level) designs. This
resource likely helps FPGA designers create protocol
processing systems with better performance, flexibility, and
time-to-market by providing methods, case studies, and
optimization strategies. In order to successfully implement
protocol processing functions, the paper may also provide
useful examples and suggestions for integrating Vivado HLS
into FPGA design workflows.

 The field of VLSI design techniques is explored by
Mukherjee, Ranganathan, and Bassiouni with the goal of
improving the effectiveness of data transformation
procedures for tree-based codes[16]. This study probably
investigates novel strategies and optimisation techniques for
effectively executing data transformations on VLSI hardware
platforms. For encoding and decoding activities, tree-based
codes which are often utilized in a variety of applications,
including error correction and data compression need

effective data transformation processes. It is probable that
the article will include innovative VLSI designs,
architectures, and algorithms designed to reduce hardware
complexity and resource consumption and speed up data
translation activities. Practical advice and experimental
findings are included, which probably makes a significant
addition to the field of VLSI design for data processing
applications and offers direction to practitioners and
researchers looking to increase the effectiveness and
performance of tree-based code implementations on VLSI
platforms.

2.1CANONICAL HUFFMAN CODING:

 Canonical Huffman coding is a variation of Huffman
coding, a well-liked data compression method with many
applications because of its efficiency and simplicity.
Canonical Huffman coding assigns a predetermined
canonical code to each symbol as opposed to regular
Huffman coding's assignment of variable-length codes
depending on symbol frequencies. Based on a certain symbol
ordering—typically arranged in ascending order by symbol
value—these canonical codes are established. Compared to
regular Huffman coding, canonical Huffman coding has a
number of benefits, such as streamlined encoding and
decoding procedures, lower memory needs, and improved
error robustness.

Fig2:Represents canonical Huffman encoding tree algorithm.

 Every symbol that is used to build a Huffman tree is first
represented by a parentless node that contains the symbol
and its probability. The construction of the tree structure
begins at these nodes. The method then successively chooses
the two nodes with the lowest probabilities, joins them to
form a new parent node, and gives this parent node a
probability that is equal to the total of the probabilities of all
of its offspring. This procedure keeps on until the Huffman
tree's root—a single parentless node—remains. In the
course of building the tree, greater probability symbols are
positioned closer to the root, allowing for shorter codewords
for more often recurring symbols.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1424

 After the Huffman tree is built, a path from the tree's root
to each symbol must be traced in order to encode each
symbol. A '1' is assigned for each branch taken in one
direction and a '0' for each branch taken in the other
direction as the traverse proceeds. Each symbol is uniquely
identified by a binary pattern created by this method. For
example, the symbol 'A' is encoded as '0', 'B' as '100', 'C' as
'101', 'D' as '110', and 'E' as '111' in the given example. By
guaranteeing that the most frequently occurring symbols
receive the shortest codewords, this encoding approach
maximizes the Huffman coding technique's overall
compression efficiency.

 Simple and effective encoding and decoding procedures
characterize canonical Huffman coding. Constructing and
storing a Huffman tree is not necessary during encoding or
decoding since the codewords are assigned in a predefined
canonical sequence. Canonical Huffman coding is a good fit
for resource-constrained situations like embedded systems
or hardware implementations since it greatly minimizes the
computational cost and memory overhead associated with
regular Huffman coding. When considering canonical
Huffman coding against regular Huffman coding, the former
has better error robustness. Small faults or variations in
symbol frequencies are less likely to cause problems for the
encoding and decoding operations since the codewords are
allocated according to a predetermined sequence instead
than being dynamically calculated depending on symbol
frequencies.

2.2ASCII Values:

In digital computer equipment, characters are represented
by numeric codes according to the ASCII character encoding
standard. A 7-bit binary integer is used in ASCII to represent
each character, for a total of 128 possible character
combinations. These characters contain numerals, control
characters, punctuation marks and special symbols in
addition to capital and lowercase letters. The ASCII values
for the capital and lowercase letters 'A' and 'a', respectively,
are 65 and 97, respectively. ASCII values offer a standardized
way to represent textual information across many platforms
and programming languages. They are widely used in
computer systems for text encoding, communication
protocols, and data transfer.

2.3VLSI

The needs and goals for the electronic circuit that
has to be created are described in the design specifications.
Using symbols to create a visual depiction of the circuit and
linking them to show the connections and functionality of the
individual components is known as schematic capture.
Custom symbols can be made to represent particular
elements or operations that aren't easily found in standard

libraries. Through the use of specialised software, simulation
involves evaluating the circuit's performance and analysing
its behaviour under various inputs and situations. Arranging
the circuit's physical parts on a printed circuit board or
integrated circuit while taking signal integrity, routing, and
size into account is known as layout. To avoid mistakes or
manufacturing problems, Design Rule Check verifies that the
layout complies with specified design guidelines and
limitations.

 Fig3:VLSI Design

In order to get more realistic simulation results,
extraction entails removing parasitic parts and features from
the plan. The Layout vs. Schematic (LVS) check verifies that
the schematic and layout match and finds any
inconsistencies or mistakes. Post-layout simulation offers
insights into the real-world behaviour and performance
characteristics of the circuit by validating its performance
based on the finalised layout. Together, these phases make
up the design process for electrical circuits, which
guarantees that their performance, dependability, and
usefulness satisfy the criteria.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1425

III.PROPOSED METHOD:

 The process of implementing Huffman encoding
starts with the input data, which is the unprocessed data that
has to be compressed. The Huffman Buffer receives this
input and processes it first there. In addition to the data, a
Frequency Count is produced, indicating how frequently
each letter or symbol that appears in the input occurs.
Finding the best encoding method based on symbol
probabilities requires this frequency count. Sorting comes
next after the frequency count has been determined. Based
on how frequently symbols appear, the Frequency Count is
sorted. Sorting makes ensuring that throughout the encoding
process, symbols with higher frequencies are given priority,
enabling more effective compression. Following sorting, the
information is arranged to make it easier to subsequent
processing steps.

 Fig4:Proposal Model

Sorting is followed by the Bitmapping procedure.
Based on the frequency and location of each symbol in the
sorted list, a binary code is assigned to it in this stage. Higher
frequency symbols usually have shorter binary codes, which
maximises the Huffman encoding scheme's compression
effectiveness. By guaranteeing that every symbol is
represented by a distinct binary pattern, bitmapping allows
for accurate reconstruction to occur during decoding. The
binary codes that are allocated to every symbol during the
Bitmapping process are used to construct the Code Table as
part of the implementation. The Code Table maps symbols to
their corresponding binary representations and is used as a
guide for encoding and decoding activities. When utilising
the Huffman encoding technique to correctly compress and
decompress data, this table is essential.

Ultimately, the compressed form of the input data is
produced as the output data. Binary code sequences that are
retrieved from the Code Table are commonly used to

represent the compressed data. Due to effective symbol
encoding based on frequencies, the output data has been
compressed to a size substantially less than the original
input data. Using the concepts of Huffman encoding, the
implementation method makes sure that the output data
retains data integrity while attaining the best compression
ratios.

3.1Implementation:

The input data is a series of symbols with their
corresponding frequencies shown: A, B, C, D, and E. In the
input sequence, the symbols A, B, C, D, and E appear four
times, seven times, two times, and four times, respectively,
totaling 160 bits.

Sorting:

2 3 4 4 7

D C E A B

Bit-mapping involves allocating a binary code to every
symbol according to its frequency and location in the sorted
list. Higher frequency symbols usually have shorter binary
codes, which maximises compression effectiveness. As an
illustration:

B = 10 C = 110 D = 1110 E = 1111 A = 00

 Fig5:BitMapping

During the encoding process, these binary codes are
employed to represent the symbols, guaranteeing effective
compression while maintaining data integrity.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1426

 Table1:Code table

This code table is used to represent the compressed data as
follows:

An B C C D B C C D A, B, C, E, B, and E A

01 11 11 101 100 11 01 11 11 00 00 11 00 01 11

The original 160 bits of data have been reduced to 45 bits for
this data.Furthermore, the compressor data code word form
is supplied as follows, which indicates the frequency of
occurrence and the associated code word: (2,01), (2,11),
(2,11), (3,101), (3,100), (2,11), (3,101), (3,100), (2,01),
(2,01), (2,11), (2,00), (2,00), (2,11), (2,01), (2,11)

Ninety bits are needed for this compressed data in word
form compressor data code.

3.2 Software and Hardware Environment

 Xilinx ISE (Integrated Synthesis Environment) is
the synthesis tool used for the Huffman encoding project. It
is a full-featured software tool for creating and assembling
digital circuits that are intended to be used with Xilinx FPGAs
(Field-Programmable Gate Arrays). With its array of
synthesis, simulation, and verification functions, Xilinx ISE
provides an intuitive user interface for creating and
executing sophisticated digital systems. Designers may use
Xilinx ISE to produce programming files for FPGA
configuration, execute synthesis to transform RTL (Register
Transfer Level) code into a gate-level netlist, and construct
and optimise digital designs.

 Furthermore, ModelSim is used in the undertaking
for simulation needs. The popular HDL (Hardware
Description Language) simulation programme ModelSim has
sophisticated features for modelling digital designs defined
in Verilog and VHDL (VHSIC Hardware Description
Language). Before putting their digital circuits into
hardware, designers may use ModelSim to mimic their
circuits' behaviour, check for functioning, and troubleshoot
any possible problems. ModelSim offers a powerful
simulation environment and industry-standard language

support, making it an effective platform for confirming the
Huffman encoding design's functionality and efficiency.

 By leveraging Xilinx ISE for synthesis and ModelSim
for simulation, the project benefits from a comprehensive
design flow that integrates synthesis and verification
processes seamlessly. This integrated approach enables
designers to develop and validate the Huffman encoding
circuit efficiently, ensuring that the final implementation
meets the project's requirements for performance,
functionality, and reliability. With Xilinx ISE and ModelSim,
designers have access to powerful tools and resources to
facilitate the successful completion of the Huffman encoding
project.

IV. RESULTS

 The Huffman encoding process's output outcomes
for the given input data are shown in the figure. It illustrates
the binary codes assigned to each symbol and provides a
visual representation of the compressed data, proving the
effectiveness of the Huffman encoding approach in
minimizing data size.

Fig6:Represent the output results for the input given.

The Huffman buffer module's simulated waveform shows
how the buffer behaves during encoding. The waveform
displays the processed and buffered input data together with
signals denoting the beginning and ending of each symbol.
The waveform also shows how each symbol's occurrence is
tracked during the frequency count creation process. The
Huffman buffer effectively handles the incoming data during
the simulation, guaranteeing precise frequency counts and
setting up the next encoding steps.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1427

 Fig7:Simulation waveform of Huffman buffer module

Fig8: simulation waveform of code table module

 The code table module's simulated waveform
shows how the module behaves dynamically during
encoding. Based on the frequency and location of each
symbol in the sorted list, it shows how binary codes are
generated for each symbol. The waveform provides
information on how the encoding process is being executed
by displaying the interactions between the module's inputs,
outputs, and internal signals.

 By means of the simulation, it is noted that the code
table module effectively ensures efficient compression of the
input data by mapping symbols to their corresponding
binary representations. The waveform illustrates how
different symbols are converted into binary codes,
emphasising the module's assistance with the encoding
process.

 The Huffman encoder's technical diagram is shown
in the picture, which also shows the hardware parts and how
they are connected throughout the encoding process. It
displays the encoder's design, showcasing components
including the sorting unit, bitmapping module, frequency
counter, and Huffman buffer. The connections made between
these modules show how data and control signals go through

the encoder and illustrate the steps that the Huffman
encoding method goes through in order.

 Fig9:Technological diagram of the Huffman encoder

 An exact breakdown of the hardware components
used in the encoding process is given by the picture, which
shows how many adders, comparators, and multiplexers the
Huffman encoder uses. The distribution of computing
components throughout the various encoding method stages
is shown in this graphic representation, which provides
insights into the complexity and resource usage of the
encoder's architecture.Adders, comparators, and
multiplexers serve as representations for the numerous
arithmetic and logical operations that are needed throughout
the encoding process. The amount of work required to
perform the sorting, bitmapping, and symbol frequency
counting phases of Huffman encoding is indicated by the
number of each component. Designers may evaluate the
computational needs and optimise the encoder's
architecture for effectiveness and performance by visualising
the distribution of these components.

Fig10: Number of adders and comparators and multiplexers
used in Huffman encoder.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1428

The Huffman encoder's implementation yielded findings that
show notable differences in speed and resource use between
modules. With 40 slice registers and 120 slice LUTs for the
buffer and 385 slice registers and 554 slice LUTs for the
frequency counting, the Huffman buffer and frequency count
modules use comparatively less resources. In spite of this,
they support crucial preprocessing stages in the encoding
procedure.

 Table2:Results

 On the other hand, the modules responsible for
sorting and bit mapping demand larger resource allocations.
Sorting requires 421 slice registers and 2021 slice LUTs,
while bit mapping requires 159 slice registers and 178 slice
LUTs. These modules are essential for organising the
incoming data and producing binary codes that are based on
the frequency of the symbols. As a result, their increased use
of resources indicates their importance in the encoding
process.

 Significant resource consumption is shown by the
code table generation and top module, which stand for the
integration of all encoding components. The code table
module's intricate process of converting symbols into binary
codes is demonstrated by the use of 3097 slice LUTs and
1529 slice registers. Overall, our findings demonstrate how
resource-intensive the Huffman encoding procedure is and
stress how crucial effective hardware design is to achieving
the best possible performance in terms of latency and power
consumption.

V. Conclusion

 The implementation of a canonical Huffman
encoder combined with a frequency sorter is effectively
accomplished by this work, in conclusion. Assigning shorter
binary codes to more often occurring symbols, the encoder
efficiently compresses data by sorting strings according to
ASCII values and applying the principles of Huffman
encoding. Effective data compression is fundamental in many
applications, including Internet of Things and other data-
intensive fields, and our approach establishes the

groundwork for it. The created encoder is ideally suited for
contexts with limited resources and communication
channels with restricted bandwidth as it shows the ability to
reduce data significantly while maintaining data integrity.
Moreover, the flexible architecture and modular design of
the encoder enable its integration into many applications,
providing adaptability and scalability in data compression
solutions.

 VI. Future Scope

 Future research will concentrate on improving the
canonical Huffman encoder's scalability and efficiency by
investigating optimisations such hardware acceleration and
parallel processing. Furthermore, in order to handle
changing data compression requirements across a variety of
applications and further increase compression ratios,
research will explore the integration of sophisticated
compression algorithms and adaptive approaches.

VII. References:

1. D. A. Huffman, “A Method for the Construction of
Minimum-Redundancy Codes,” Proceedings of the IRE, vol.
40, no. 9, 1952, doi: 10.1109/JRPROC.1952.273898.

2. S. J. Sarkar, N. K. Sarkar, and A. Banerjee, “A novel Huffman
coding based approach to reduce the size of large data
array,” in Proceedings of IEEE International Conference on
Circuit, Power and Computing Technologies, ICCPCT 2016,
2016. doi: 10.1109/ICCPCT.2016.7530355.

3. Y. Liu and L. Luo, “Lossless compression of full-surface
solar magnetic field image based on huffman coding,” in
Proceedings of the 2017 IEEE 2nd Information Technology,
Networking, Electronic and Automation Control Conference,
ITNEC 2017, 2017. doi: 10.1109/ITNEC.2017.8284866.

4. Z. Shao et al., “A High-Throughput VLSI Architecture
Design of Canonical Huffman Encoder,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 69, no. 1, 2016,
doi: 10.1109/TCSII.2016.3091611.

5. S. R. Khaitu and S. P. Panday, “Canonical Huffman Coding
for Image Compression,” in Proceedings on 2017 IEEE 3rd
International Conference on Computing, Communication and
Security, ICCCS 2017, 2017.
doi:10.1109/CCCS.2017.8586816.

6. Xilinx, “Vivado HLS Optimization Methodology Guide
2017.1,” Xilinx.Com, vol. 1270, 2017.

7. Xilinx, “Designing Protocol Processing Systems with
Vivado High-Level Synthesis,” Xapp1209, vol. 1209, 2014.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 1429

8. Xilinx, “UltraFast Design Methodology Guide for the Vivado
Design Suite,” Ug949, vol. 949, 2016.

9. A. Pal, Low-power VLSI circuits and systems. 2015. doi:
10.1007/978-81-322-1937-8.

10. J. Oh and M. Pedram, “Power reduction in microprocessor
chips by gated clock routing,” Proceedings of the Asia and
South Pacific Design Automation Conference, ASP-DAC, 1998,
doi: 10.1109/aspdac.1998.669478.

11. J. Oh and M. Pedram, “Gated clock routing for low-power
microprocessor design,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 20, no.
6, 2001, doi: 10.1109/43.924825.

12. Shunji Funasaka, Koji Nakano, and Yasuaki Ito. 2017.
Adaptive lossless data compression method optimized for
GPU decompression. Concurrency and Computation: Practice
and Experience 29, 24 (2017), e4283.

13. W. M. Holt. 2016. 1.1 Moore’s law: A path going forward.
In 2016 IEEE International Solid-State Circuits Conference
(ISSCC). 8–13.

14. Y. Kim, I. Hong, and H. Yoo. 2015. 18.3 A 0.5V 54W ultra-
low-power recognition processor with 93.5% accuracy
geometric vocabulary tree and 47.5% database compression.
In 2015 IEEE International Solid-State Circuits Conference -
(ISSCC) Digest of Technical Papers. 1–3.

15. J. Matai, J. Kim, and R. Kastner. 2014. Energy efficient
canonical huffman encoding. In 2014 IEEE 25th International
Conference on Application-Specific Systems, Architectures
and Processors. 202–209.

16. A. Mukherjee, N. Ranganathan, and M. Bassiouni. 1991.
Efficient VLSI designs for data transformation of tree-based
codes. IEEE Transactions on Circuits and Systems 38, 3
(1991), 306–314.

17. A. Ozsoy and M. Swany. 2011. CULZSS: LZSS Lossless
Data Compression on CUDA. In 2011 IEEE International
Conference on Cluster Computing. 403–411.

18. R. A. Patel, Y. Zhang, J. Mak, A. Davidson, and J. D. Owens.
2012. Parallel lossless data compression on the GPU. In 2012
Innovative Parallel Computing (InPar). 1–9.

19. Seong Hwan Cho, T. Xanthopoulos, and A. P.
Chandrakasan. 1999. A low power variable length decoder
for MPEG-2 based on nonuniform fine-grain table
partitioning. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 7, 2 (1999), 249–257.

20. André Weißenberger and Bertil Schmidt. 2018. Massively
Parallel Huffman Decoding on GPUs. In Proceedings of the
47th International Conference on Parallel Processing
(Eugene, OR, USA) (ICPP 2018). Association for Computing
Machinery, New York, NY, USA, Article 27, 10 pages.
https://doi.org/10.1145/3225058.3225076

