

Study The stability of a high-speed boat according to the recommendations of Maritime Classification Societies

Eng. Ali Adnan Ajamiah¹, Dr. Heitham Issa²

¹Marine Engineer and Master Student, Department of Maritime Engineering, Faculty of Mechanical and Electrical Engineering, Tishreen University, Latakia, Syria. ²Associate Professor, Maritime Engineering Department, Faculty of Mechanical and Electrical Engineering, Tishreen University, Latakia, Syria.

Abstract - The research reviews the designs of high speed boats hulls and the features and characteristics of each one, leading to the selection and design of a suitable model using the Maxsurf program with dimensions suitable for the marine market and with a monohull type (Planning Hull), due to its good speed and maneuvering characteristics, lower resistance values, and less disturbance on the water surface. After that, a preliminary drawing of the general arrangement plan and the tank distribution plan was made, and stability calculations were conducted on the boat designed according to the recommendations of the Maritime Classification Society, to deduce the behavior of the hull and the resulting stability values under different loading cases.

Key Words: high-speed boat, boat stability, general arrangement, monohull, planning hull.

1.INTRODUCTION

With the rapid development in ship design and construction, high-speed boats occupy an important place in development laboratories so that the studied structures achieve the required speeds with lower capacities by reducing the values of the resistances affecting the boat due to the better streamlined shape that is compatible with international classification rules, as modern models seek to achieve high quality and reliability. For this reason, many studies have addressed the topics related to fast boats and the difficulties facing designers in this field. Some of them discussed the initial hydrodynamic characteristics of slender structures and gave the schematic equations and experimental methods that show the values of the wetted surface areas, pressure centers, the angle of the ship's entry, and the longitudinal tilt resulting from the increase in speed, in addition to setting the predictive equations that achieve the horsepower requirements and appropriate operating values in accordance with the studied structure with a set of illustrative examples and digital diagrams [1]. Some of them also presented the problems facing designers in producing slender marine structures under the lowest values of effective resistance due to the complexity in determining the nature of fluid flow and its effect on the structure and the role of wet and free surfaces and the mutual influence between them, and did not Predicting resistance values was a simple matter, as a model was

designed and placed in a test basin, and the results were collected within the research. A set of equations were extracted that give the initial prediction of resistance values and the relationship between the streamlined shape of the hull and achieving the highest possible speed in order to improve the actual operation of the ship under different sailing conditions [2]. The various investment conditions for high-speed boats were also discussed according to a studied model that achieves the required speed and economic efficiency, in addition to determining the appropriate size of the submerged part and presenting methods for improving flow. The author found that the Planning hull pressures increase in the front part of the hull, but decrease and become negative in the aft. He found that the thickness of the boundary layer increases in the direction of flow and decreases with increasing model speeds. He found that the measured speeds outside the boundary layer were greater than the free flow in the aft part of the hull, indicating acceleration from the front position. The research emphasized the importance of adding side fins to improve stability according to the results of the flow analysis around the studied hull [3]. Some research has dealt with developments in models of civil and military high-speed boat structures, where calculating speed and energy is a major topic for designing a model that achieves compatibility between structure and power. The research programmed both the Savitsky equations, which are the most widely used method, and the CAHI equations used in military models to predict resistance values. The study includes a set of variables related to the main dimensions, the movement of the boat, and the influence factors. The aim of this study is to present the CAHI method to the community of high-speed boat designers [4]. The relationship between the deadrise angle and the resulting resistance was studied, in addition to creating a database for the studied model structures. The initial results indicated that the design with a large deadrise angle showed less resistance compared to the reference boat design, as the hull resistance decreased by 16.87% at a deadrise angle of 30 degrees compared to the largest resistance at any other elevation angle [5]. The Syrian Arab Republic lacks this type of boats, except for some small fishing and pleasure boats. Therefore, it is necessary to determine the appropriate model for work in

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Syrian territorial waters, while specifying the available capabilities and the type of materials used in construction and their role in improving the actual return and the required efficiency.

1.1 The importance of the research and its objectives

The importance of the research stems from the necessity of finding the appropriate model due to the urgent need to design and apply this model with appropriate dimensions from the economic and investment point of view, and with good stability characteristics, and to establish this model as a basic structure for establishing marine guard groups with national expertise to secure the mission of protecting territorial waters, and employing this model for various purposes such as:

- Combating smuggling operations
- Combating piracy operations
- Combating illegal immigration operations

• Search and rescue operations and rapid response (to assist boats and other ships or assist individuals in the water)

• Periodic coastal patrols to protect maritime borders.

1.2 Research methods and materials

The methods and materials used in this research are as follows:

- The Maxsurf program with its various sections, which are Maxsurf Modeler, Maxsurf Resistance, and Maxsurf Stability, to design the hull and conduct initial tests on it.

- The AutoCAD program to draw the General Arrangement plan for the designed boat.

- The Excel program to help draw some tables and clarify some graphs.

1.3 Research Methodology

The methodology followed in this research is analytical within the Maxsurf program environment.

2. CHOOSING THE INITIAL PROPORTIONS

The design process began with a major analysis of some similar boats that had been designed and built previously:

	-		-	-		-	
Vesse l Name	Shipyar d	LOA (m)	Beam (m)	Depth (m)	Draf t (m)	Speed (Knot)	Disp (tons)
SPa4 207	Damen	42.8	7.11	3	2.52	30	239
Sea Axe	Damen	30.5 3	7.07	3.22	2.2	22.5 to 31.5	146
Sea Axe5 009	Damen	50.2	9.32	4.45	3.5	25 to 30	474
Sea Axe5 509	Damen	58	9.55	4.4	2.9	26 to 30	500
Patro 138	Austal	38.2	7.2	4.5	2.4	24	174
Herc ules1 40	Ares	43.5	8.3		1.81	45	201
Herc ules1 50	Ares	47.9 5	8.4		1.84	30	245
SSC4 5	Kership	45.7	8.4		2.4	30	270
SSC5 2	Kership	52	9		2.7	27	440

Table -1: List of similar designs analyzed

After analyzing the values of the main dimensional ratios of the previous designs and identifying their characteristics, and based on the famous geometric similarity theory, it was assumed that the appropriate dimensions that achieve the required goal fall within the following areas (Table 2):

Table-2: Main dimensions of the designed boat

LOA	20-25	(m)
Speed	25-35	(kn)
Beam	4-6	(m)
Tmax	0.7-1.5	(m)

After researching the range of available high-speed boat designs, three different Displacement hull, Semi-displacement hull and Planning hull designs were selected for initial testing:

Fig-1: Displacement hull

http://trawlerschoolcharters.com/blog/wp-content/uploads/2013/09/boatlinessmall.jpg.

Fig-2: Semi-displacement hull

Fig-3: Planning V hull

https://www.mdpi.com/2411-9660/6/6/105

The generated wave field for each of the previous designs was calculated using the Resistance Maxsurf program. The results of the analysis are shown in chart (1). chart (1) shows that the Displacement hull creates waves with a higher height than its counterparts in the studied group, and thus greater turbulence on the water surface, while we note that the

Planning V hull is more stable, which gives it good maneuvering characteristics in harsh conditions and lower resistance values, and the ability to reach higher speeds and create very low waves in the lower and medium speed range.

Chart-1: Comparison of the height of the waves generated by the three models (EXCEL)

3. HULL DESIGN

After conducting the previous analysis, the boat was designed using the Maxsurf program with a relatively slender Planning hull with a V-shaped bow to achieve good speed and maneuverability suitable for various sailing conditions and coast guard missions within territorial waters. It is designed entirely from resistant fiber.

Fig-4: Boat hull (Maxsurf Modeler)

International Research Journal of Engineering and Technology (IRJET) Volume: 11 Issue: 10 | Oct 2024 www.irjet.net

(Maxsurf Resistance)

IRJET

Table-3: Hydrostatic data of the boat

(Maxsurf Software)

1	Displacement t	39.79
2	Draft at FP m	0,735
3	Draft at AP m	0.947
4	Draft at LCF m	0,863
5	Trim (+ve by stern) m	0,212
6	WL Length m	20.601
7	Beam max extents on WL m	4.468
8	Wetted Area m^2	78.835
9	Waterpl. Area m^2	71.050
10	Prismatic coeff. (Cp)	0.686
11	Block coeff. (Cb)	0.451
12	Max Sect. area coeff. (Cm)	0.692
13	Waterpl. area coeff. (Cwp)	0.772
14	LCB from zero pt. (+ve fwd) m	-2.896
15	LCF from zero pt. (+ve fwd) m	-2.276
16	KB m	0.535
17	KG m	1.000
18	BMt m	2.584
19	BML m	43.708
20	GMt m	2.091
21	GML m	43.215
22	KMt m	3.119
23	KML m	44.241
24	Immersion (TPc) tonne/cm	0.728
25	MTc tonne.m	0.797
26	RM at 1deg = GMt.Disp.sin(1)tonne.m	1.452

4. GENERAL ARRANGEMENT

Figure (6) shows the general arrangement plan (GA) of the designed boat, which was drawn using AutoCAD software:

Fig-6: General arrangement plan

(AutoCAD Software)

Fig-7: Tanks distribution plan (Maxsurf)

5. STABILITY CALCULATIONS:

(Maxsurf Stability)

Stability studies were conducted on the boat designed in this research at four loading conditions (according to the recommendations of the classification societies):

- 1- Lightship Condition.
- 2- Mid-trip Condition.
- 3- Departure Condition.
- 4- Arrival Condition.

The resulting stability values were verified to be in line with the safe values of the International Maritime Organization (IMO) and the marine classification societies (CS) by comparing them with the IMO standard (A749) included implicitly in the Maxsurf program.

5.1 First case: Lightship Condition

Table-4: Lightship Load Case

(Maxsurf Stability)

ltem Name	Quantity	Unit Mass tonne	Total Mass tonne	Unit Volume m^3	Total Volume m^3	Long. Arm m	Trans. Arm m	Vert. Arm m
Lightship	1	19.489	19.489			-2.171	-0.010	2.122
Crew	0	0.000	0.000		0	0.000	0.000	0.000
Payload	0	0.000	0.000		0	0.000	0.000	0.000
fuel	0%	7.455	0.000	7.895	0.000	-0.689	0.000	0.000
fuel	0%	7.455	0.000	7.895	0.000	-0.689	0.000	0.000
fresh water engine	0%	0.658	0.000	0.642	0.000	1.123	1.284	0.358
fresh water engine	0%	0.658	0.000	0.642	0.000	1.123	-1.284	0.358
oil engine room	0%	0.235	0.000	0.256	0.000	-4.671	1.500	0.394
oil enfine room	0%	0.235	0.000	0.256	0.000	-4.671	-1.500	0.394
hydrolic oil steering	0%	0.138	0.000	0.150	0.000	-11.000	0.250	1.500
hydrolic oil steering	0%	0.138	0.000	0.150	0.000	-11.000	-0.250	1.500
dirty oil	0%	0.608	0.000	0.661	0.000	3.506	0.001	0.039
dirty oil	0%	0.608	0.000	0.661	0.000	3.506	-0.001	0.039
Tank chimical	0%	1.364	0.000	1.482	0.000	2.510	0.000	0.006
anchor tank	0%	0.074	0.000	0.073	0.000	9.185	1.084	2.000
anchor tank	0%	0.074	0.000	0.073	0.000	9.185	-1.084	2.000
Total Loadcase			19.489	20.834	0.000	-2.171	-0.010	2.122
FS correction					0			0.000
VCC fluid								2 422

L

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Table-5: IMO standards test for stability at 0% load condition(Maxsurf Stability)

Code	Criteria	Value	Units	Actual	Status	Margin 96
A.749	3.1.2.1: Area 0 to 30				Pass	
	from the greater of					
	spec, heel angle	0.0	deg	0.0		
	to the lesser of					
	spec, heel angle	30.0	deg	30.0		
	angle of vanishing stability	80.0	deg			
	shall not be less than (?=)	3.1613	m.deg	7.9889	Pacc	+153.51
		:				
A.749	3.1.2.1: Area 0 to 40		:		Pass	
	from the greater of		:			
	spec, heel angle	0.0	deg	0.0		
	to the lesser of					
	spec, heel angle	40.0	deg	40.0		
	first flooding angle of the Downflooding	n/a	deg			
	angle of vanishing stability	80.0	dea			
	shall not be less than (P=)	6.1688	m.dea	13.2883	Pass	+157.66
A.749	3.1.2.1: Area 30 to 40				Pacc	
	from the orealer of					
	spec heel angle	30.0	dea	30.0		
	to the Jesser of					
	spec, beel apple	40.0	dea	40.0		
	first flooding angle of the Downflooding	0/2				
	angle of vanishing stability	80.0				
	shall not be less than (br)	4 7486		6 2974	Pare	+209.19
0 749	2.1.2.2: May 07 at 10 or granter				Parr	
	In the more from the orester of					
	and here have a see a second of	20.0		20.0		
	concer head angle	00.0				
	spec. neel angle					
	angle of max. Gz	47.3		47.3		
	shall not be less than (*=)	0.200	<u>; m</u>	0.680	Pass	+195.00
	Intermediate values					
	angre at which this G2 occurs			47.3		
			÷			
A.748	3.1.2.3: Angle or maximum G2	·····			Pacc	
	snall not be less than (?=)	26.0	oeg	47.3	Pace	+89.09
			<u>.</u>			
A.749	3.1.2.4: INITIAL OM				Pacc	
	spec, heel angle	. 0.0				
	shall not be less than (?=)	0.160	i m	1.084	Pass	+622.67

5.2 Case 2: Mid-trip Load Condition

Table-6: Mid-trip Load Case (Maxsurf Stability)

Itom Namo	Quantity	Unit Mass	Total Mass	Unit Volume	Total Volume	Long. Arm	Trans. Arm	Vert. Arm
item warne	Quantity	tonne	tonne	m^3	m^3	m	m	m
Lightship	1	19.489	19.489			-2.171	-0.010	2.122
Crew	10	0.075	0.750			-1.344	0.000	1.237
Payload	1	0.750	0.750			-1.344	0.000	1.237
fuel	50%	7.455	3.728	7.895	3.948	-1.478	0.721	0.381
fuel	50%	7.455	3.728	7.895	3.948	-1.478	-0.721	0.381
fresh water engine	50%	0.658	0.329	0.642	0.321	1.969	1.739	0.647
fresh water engine	50%	0.658	0.329	0.642	0.321	1.969	-1.739	0.647
oil engine room	50%	0.235	0.118	0.256	0.128	-4.500	1.698	0.661
oil enfine room	50%	0.235	0.118	0.256	0.128	-4.500	-1.698	0.661
hydrolic oil steering	50%	0.138	0.069	0.150	0.075	-11.000	0.250	1.575
hydrolic oil steering	50%	0.138	0.069	0.150	0.075	-11.000	-0.250	1.575
dirty oil	50%	0.608	0.304	0.661	0.330	3.972	0.365	0.373
dirty oil	50%	0.608	0.304	0.661	0.330	3.972	-0.365	0.373
Tank chimical	50%	1.364	0.682	1.482	0.741	2.991	0.000	0.303
anchor tank	50%	0.074	0.037	0.073	0.036	9.213	1.132	2.174
anchor tank	50%	0.074	0.037	0.073	0.036	9.213	-1.132	2.174
Total Loadcase			30.839	20.834	10.417	-1.669	-0.006	1.538
FS correction								0.330
VCG fluid								1.869

Table-7: IMO standards test for stability at 50% load condition (Maxsurf Stability)

Code	Criteria	Value	Units	Actual	Status	Margin 96
A.749	3.1.2.1: Area 0 to 30				Pass	
	spec, heel angle	0.0	dea	0.0		
	to the lesser of					
	spec, heel angle	30.0	deg	30.0		
	shall not be less than (P=)	3,1613	m deg	9 4338	Pacc	+199.35
A.749	3.1.2.1: Area 0 to 40				Pass	
	spec, heel angle	0.0	dea	0.0		
	to the lesser of					
	spec, heel angle	40.0	deg	40.0		
	angle of vanishing stability	85.5	deg			
	shall not be less than (?=)	6.1688	m.deg	16.8939	Pass	+208.22
A.748	3.1.2.1: Area 30 to 40				Pass	
	spec, heel angle	30.0	deg	30.0		
	to the lesser of					
	spec, neel angle first flooding apple of the Downflooding	40.0	deg	40.0	-	
	angle of vanishing stability	85.5	deg			
	shall not be less than (?=)	1.7189	m.deg	6.4603	Pass	+275.84
A.749	3.1.2.2: Max GZ at 30 or greater				Pass	
	In the range from the greater of					
	spec, heel angle	30.0	deg	30.0		
	spec, heel angle	90.0	deg			
	angle of max. GZ	46.4	deg	46.4		
	shall not be less than (P=)	0.200	m	0.729	Pass	+264.50
	angle at which this GZ occurs		deg	46.4		
A.749	3.1.2.3: Angle of maximum GZ			40.4	Pass	
	enan not op roes unân (*=)	26.0	ury.	40.4	ra66	-03.46
A.749	3.1.2.4: Initial GMt				Pass	
	spec, heel angle	0.0	deg		Dees	
	snall not be less thâñ (PE)	0.160	: 🕅	1.306	Pacc :	+110.00 :

5.3 Case 3: Departure Condition

Table-8: Departure Load Case (Maxsurf Stability)

		Unit Mass	Total Mass	Unit Volume	Total Volume	Long. Arm	Trans. Arm	Vert. Arm
Item Name	Quantity	tonne	tonne	m^3	m^3	m	m	m
Lightship	1	19.489	19.489			-2.171	-0.010	2.122
Crew	10	0.075	0.750			-1.344	0.000	2.237
Payload	1	0.750	0.750		(-1.344	0.000	2.237
fuel	98%	7.455	7.306	7.895	7.737	-1.473	0.887	0.592
fuel	98%	7.455	7.306	7.895	7.737	-1.473	-0.887	0.592
fresh water engine	98%	0.658	0.645	0.642	0.629	1.979	1.816	0.770
fresh water engine	98%	0.658	0.645	0.642	0.629	1.979	-1.816	0.770
oil engine room	98%	0.235	0.230	0.256	0.250	-4.500	1.762	0.780
oil enfine room	98%	0.235	0.230	0.256	0.250	-4.500	-1.762	0.780
hydrolic oil steering	98%	0.138	0.135	0.150	0.147	-11.000	0.250	1.647
hydrolic oil steering	98%	0.138	0.135	0.150	0.147	-11.000	-0.250	1.647
dirty oil	20%	0.608	0.122	0.661	0.132	3.932	0.312	0.239
dirty oil	20%	0.608	0.122	0.661	0.132	3.932	-0.312	0.239
Tank chimical	98%	1.364	1.336	1.482	1.453	2.995	0.000	0.527
anchor tank	98%	0.074	0.073	0.073	0.071	9.221	1.162	2.287
anchor tank	98%	0.074	0.073	0.073	0.071	9.221	-1.162	2.287
Total Loadcase			39.347	20.834	19.386	-1.577	-0.005	1.430
FS correction								0.002
VCG fluid								1.432

Fig-13: GZ curve at departure status (Maxsurf Stability)

L

Table-9: IMO stability standards test at departure status
(Maxsurf Stability)

Code	Criteria	Value	Units	Actual	Status	Margin %
A.749	3.1.2.1: Area 0 to 30				Pass	
	from the greater of		<u>.</u>			
	spec, heel angle	0.0	deg	0.0		
	to the lesser of					
	spec. neel angle	30.0	: 009	30.0		
	shall not be less than (17)	9 1619	i m dea	19 5 9 9 9	Dare	+797 97
			:			
A.749	3.1.2.1: Area 0 to 40		<u>.</u>	<u>.</u>	Pass	
	from the greater of		<u>.</u>			
	spec, heel angle	0.0	deg	0.0		
	to the lesser of		1			
	spec, heel angle	40.0	deg	40.0		
	first flooding angle of the Downflooding	n/a	deg			
	angle of vanishing stability	99.8	deg			
	shall not be less than (?=)	6.1688	m.deg	21.2843	Pass	+312.76
			<u>.</u>	<u>.</u>		
A./48	3.1.2.1: Area 30 to 40		<u>:</u>	<u>.</u>	Pass	
	mom the greater of	30.0	: I dece	30.0		
	to the lesser of		:			
	spec, heel angle	40.0	dea	40.0		
• • • • • • • • • • • • •	first flooding angle of the Downflooding	n/a	deg			
	angle of vanishing stability	99.8	deg			
	shall not be less than (?=)	1.7189	m.deg	8.7461	Pass	+408.82
A.749	3.1.2.2: Max GZ at 30 or greater		1	<u>.</u>	Pass	
	In the range from the greater of		<u> </u>	<u>.</u>		
	spec, heel angle	30.0	deg	30.0		
	to the lesser of					
	spec. neel angle	90.0	: 009			
	angle of max. Gz	48.2		48.2		-101 50
	intermediate walker	0.200	- m	1.000	rass	*401.00
	angle at which this GZ occurs		: dea	48.2		
	Rendered as an end of the October					
A.749	3.1.2.3: Angle of maximum GZ		<u>.</u>	<u>.</u>	Pass	
	shall not be less than (?=)	26.0	deg	48.2	Pass	+92.73
			1			
A.749	3.1.2.4: Initial GMt		:		Pass	
	spec, heel angle	0.0	deg			
	shall not be less than (?=)	0.160	: m	1.716	Pacc	+1043.3

5.4 Case 4: Arrival Condition

Table-10: Arrival Load Case(Maxsurf Stability)

Item Name	Quantity	Unit Mass	Total Mass	Unit Volume	Total Volume	Long. Arm	Trans. Arm	Vert. Arm
	-	tonne	tonne	m~3	mra	m	m	m
Lightship	1	19.489	19.489			-2.171	-0.010	2.122
Crew	10	0.075	0.750			-1.344	0.000	2.237
Payload	1	0.750	0.750			-1.344	0.000	2.237
fuel	10%	7.455	0.746	7.895	0.790	-1.487	0.419	0.138
fuel	10%	7.455	0.746	7.895	0.790	-1.487	-0.419	0.138
fresh water engine	10%	0.658	0.066	0.642	0.064	1.927	1.616	0.487
fresh water engine	10%	0.658	0.066	0.642	0.064	1.927	-1.616	0.487
oil engine room	10%	0.235	0.024	0.256	0.026	-4.500	1.596	0.508
oil enfine room	10%	0.235	0.024	0.256	0.026	-4.500	-1.596	0.508
hydrolic oil steering	10%	0.138	0.014	0.150	0.015	-11.000	0.250	1.515
hydrolic oil steering	10%	0.138	0.014	0.150	0.015	-11.000	-0.250	1.515
dirty oil	98%	0.608	0.596	0.661	0.648	3.986	0.382	0.575
dirty oil	98%	0.608	0.596	0.661	0.648	3.986	-0.382	0.575
Tank chimical	10%	1.364	0.136	1.482	0.148	2.955	0.000	0.110
anchor tank	10%	0.074	0.007	0.073	0.007	9.197	1.096	2.046
anchor tank	10%	0.074	0.007	0.073	0.007	9.197	-1.096	2.046
Total Loadcase			24.029	20.834	3.247	-1.728	-0.008	1.905
FS correction								0.421
VCG fluid								2.326

Code	Criteria	Value	Units	Aotual	Status	Margin %
A.749	3.1.2.1: Area 0 to 30				Pass	
	from the oreater of					
	spec, heel angle	0.0	dea	0.0		
	to the lesser of					
	snee, heel angle	30.0	dea	30.0		
	angle of vanishing stability	713	dea			
	chall not be less than (25)	3 1613	m dea	8 1772	Pace	+96.02
			:			
740	0 4 0 4 - Area 0 in 40					
	0.1.2.1. Alloa U ID 40				F666	
	nom the greater of		<u>.</u>			
	spec. neel angle	0.0	<u>. 009</u>	0.0		
	to the lesser of		<u>.</u>			
	spec, heel angle	40.0	deg	40.0		
	first flooding angle of the Downflooding	i n/a	deg			
	angle of vanishing stability	71.3	deg			
	shall not be less than (?=)	6.1688	m.deg	10.2079	Pass	+97.96
			:			
749	3.1.2.1: Area 30 to 40		:		Pass	
	from the oreater of					
	spec, heel angle	30.0	dea	30.0		
	to the Jessey of					
	cooc heel acole	40.0	I dec	40.0		
	first feeding apple of the Dewellooding		i daga			
	machooding angle of the bownhooding	74.5				
	angle of vanishing stability	1.3				
	enali not be less than (*=)	1./188	m.oog	4.0306	Pass	+134.49
			<u>.</u>			
.749	3.1.2.2: Max GZ at 30 or greater		<u>.</u>		Pass	
	In the range from the greater of		<u>.</u>			
	spec, heel angle	30.0	deg	30.0		
	to the lesser of		<u>.</u>			
	spec, heel angle	90.0	deg			
	angle of max. GZ	42.7	deg	42.7		
	shall not be less than (>=)	0.200	m	0.435	Pass	+117.50
	Intermediate values		1			
	angle at which this GZ occurs		dea	42.7		
749	2.1.2.2: Anole of maximum 07		<u>.</u>		Pace	
	chall not be large than (he)	95.0		49.7	Dare	+70.08
	enan not oo roee urdii (/~-)	20.0		94.1	F666	-70.30
-			<u>.</u>		_	
C140	3.1.2.4: Initial OW				Pace	
	spec. neel angle	0.0	<u>. aeg</u>			
	shall not be less than (2c)	0 160	100	0 888	Pacc	+478.67

6. CONCLUSIONS

- Displacement hull create higher waves and cause greater disturbance on the water surface compared to other models studied.
- Tests according to IMO and CS rules programmed within MAXSURF software showed the safety of the designed boat.
- We conclude from the resulting stability ratios of the boat the importance of the parameter values that were chosen and the correctness of choosing the Planning hull, which showed good stability properties under different loading conditions.
- It is recommended in future studies to conduct stability calculations in case of damage, so that the hull is divided into several sectors, in order to know the behavior of the hull when a sinking occurs in one of the sectors.

• It is recommended to study the effect of installing lateral stabilization wings on the boat's stability.

REFERENCES

- [1] Daniel Savitsky, Hydrodynamic <u>Design of Planning Hulls</u>, Marine Technology , 1964.
- [2] Siu C. Fung(AM)," <u>Resistance and Powering prediction for</u> <u>Transom Stern Hull Forms During Early Stage Ship</u> <u>Design, High-Speed Displacement Hull"</u>, SNAME Transactions, Vol. 99, 1991.

- [4] Panagiotis G. Alourdas, <u>planning Hull Resistance</u> <u>calculation , The CAHI Method</u>, SNAME Greek Section , 2016.
- [5] Aditya Rio Prabowo & Evan Martono," <u>Effect of Hull</u> <u>Design Variation on The Resistance Profile and Wave</u> <u>Pattern , Patrol Boat</u>", School of Engineering, Taylor's University, vol. 17, No 1, 2022.
- [6] IMO, *International Code on Intact Stability*, United Kingdom: CPI Books Limited, 2009.
- [7] Sun, H.; and Faltinsen, O. M, <u>Numerical study of planning</u> <u>vessels in waves</u>. Journal of Hydrodynamics, Ser. B, 22(5)Supplement 1, (2010), 468-475.
- [8] https://www.damenmc.com/.

IRJET

- [9] Myung-Il Roh, Kyu-Yeul Lee, <u>Computational Ship Design</u>.
- [10] Chakraborty S, <u>Ship Stability Understanding curves of</u> <u>static stability</u>, 2017.