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Abstract – Gliomas are the most common malignancy in 
brain. Magnetic Resonance Imaging (MRI) images are widely 
used for medical imaging applications. Multimodal MRI can be 
used effectively for segmentation of brain tumors using 
Convolutional Neural Network (CNN). CNN accuracy depends 
on the large amount of data. Medical imaging datasets are 
mostly smaller in size. There is a chance of missing modality in 
MRI due to clinical settings or in case of patient not available 
for prognosis. This paper proposed a novel generator – 
discriminator architecture for development of cohort of MRI 
modality. Modified 3D UNet architectures were used as 
generator and PatchGAN for discriminator. In BraTS2020 
dataset, there are four MRI modalities present. The modified 
3D Unet provided with different three modalities as input and 
it produce the remaining modality. Discriminator block find 
the MSE, PSNR, and SSIM values to check before adopting as 
cohort. The generated modalities are used as input along with 
the original images in dataset for input to the modified 3D 
Unet. The model performance in segmentation improved up to 
2 to 3 points in each tumor sub regions. The mean dice values 
achieved using the proposed work is 0.87. 0.81. and 0.78 for 
WT, TC, and ET respectively. 

1. INTRODUCTION 

Magnetic Resonance Imaging (MRI) is the widely used 
imaging modality in the clinical practice. MRI can be very 
useful in assessing different insights in diagnosis and clinical 
planning. Multimodal characteristics of MRI scans can be 
very useful in neuroimaging, specifically brain tumor 
classification and segmentation. Gliomas are the most 
frequently occurring central nervous system (CNS) 
malignancy accounting 30% to all other CNS tumors [1].  
World Health Organisation (WHO) classified brain tumors in 
grade I to IV considering aggression of malignancy. With 
amplifying order of antagonism, Grade I and II are Low 
Grade Glioma (LGG), while, grade III and IV are High Grade 
Glioma (HGG) [2]. Due to very high variations in size, shape, 
structure, infiltrative nature of growth and peritumoral 
edema, brain tumors are hard to delineate from its 
surrounding healthy tissues. Further, the large volume of 
MRI scan, Manual border segmentation with visual 
inspection is time consuming and prone to human error [3].   

Recently, deep learning methods have shown promising 
results in medical imaging [4]. 3D UNet [5] and variations of 

3D UNet [6-9] are the most adopted method for brain tumor 
segmentation applications.  

Model accuracy in segmentation for the deep learning 
network is data centric. Medical Imaging dataset are usually 
smaller in comparison to other computer vision datasets. 
The requirement of multimodal patient imaging might also 
not possible due to various clinical requirements. 
Additionally, prognosis and follow up of singular subject may 
not be possible. To cater the need, unavailable image data 
can be augmented using Generative Adversarial Network 
(GAN). 

In this paper, generative and discriminative method of GAN 
is proposed and compared its suitability and improvements 
in outcomes on existing methods of brain tumor 
segmentation application.   

2. RELATED WORKS 

Due to success of deep learning in compute vision 
applications, data demand increasing day by day [10]. Unlike 
other computer vision dataset, medical imaging datasets are 
limited. The need of augmented data can solve the problem 
of inadequate dataset. Various application of GAN includes 
image to image translation [11], image synthesis from noise 
[12], style transfer [13], and image segmentation [14]. Due to 
smaller size of medical image datasets, GAN algorithms are 
getting popularity. 

The Generative Adversarial Network (GAN) method was 
originally introduced in 2014, by Good fellow et al [10], for 
image generation. In Medical image synthesis, CycleGAN can 
be helpful for cohort of absent modalities [15]. GANS can 
also be used for segmentation of medical images. Han et al., 
has suggested GAN method for multiple spinal structure 
segmentation from MRI scans. Several methods suggested 
possibility of utilizing GAN in medical image segmentation 
[11, 16, 17, 18]. Another 2D GAN based method RescueNet 
was proposed for brain tumor segmentation from MRI 
images [19]. The detailed review of application of GAN is 
reviewed by Yi et al [20]. 

This work is motivated from the MM-GAN [21], a 3D 
extension of Pix2Pix GAN [22]. The method synthesise 
missing image of modality from the by the available images 
of another three modalities in multimodal brain tumor 
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segmentation application. The modified patch based 3D UNet 
[23] along with PatchGAN [24] proposed here for Generator-
Discriminator framework to improve the segmentation 
accuracy in brain tumor segmentation application using 
BraTS2020 [25-29] dataset.    

3. METHOD 

3.1 Data 

The BraTS2020 dataset were used for this work. Multimodal 
Brain Tumor Segmentation (BraTS} challenge consisting of 
MRI scans of 240 x 240 size with 155 scans in each slice [25]. 
BraTS2020 dataset includes 369 training data of different 
subjects collected from different scanner and protocols at 
various institutions [26-29]. It includes four modalities of 
MRI namely; (i) T1 – native scan, (ii) T1ce – Post contrast T1 
weighted, (iii) T2 – T2 weighted, and (iv) FLAIR – T2 Fluid 
Attenuated Inversion Recovery. Another 125 and 166 
previously unknown subject data of all four modalities were 
provided for validation and testing [29].  Training data were 
manually segmentated and approved by experienced 
neurologist. Figure 1 Show the sample scan of different MRI 
modalities from the data set. 

 

Fig -1: MRI modalities in transverse plane overlapped with 
ground truth segmentation for (a) T1, (b) T1ce, (c) T2, and 
(d) FLAIR, indicated with colour blue, green and red for 
Peritumoral edema (ED), necrotic and non-enhancing tumor 
core (NCR/NET), and GD-enhancing tumor (ET) respectively. 

Multimodal nature of MRI can be useful in tumor sub region 
segmentation and the qualitative visuals of each modality are 
in figure 1. MRI volumes in transverse, coronal and sagittal 
anatomical planes are displayed in figure 2 with 
corresponding ground truth of tumor regions.  

 

Fig -2: MRI scans in (a) transverse, (b) coronal, and (c) 
sagittal plane for a typical sample images from the 

BraTS2020 dataset. 

3.2 Data Pre-processing 

BraTS2020 provides rigidly registered scans with skull-
stripping and, resample at 1mm3 isotropic resolutions. The 
multi institutional and different protocol in MRI image 
acquisition creates nonlinearity in images. There is intensity 
variation in MRI scans while recording. These inherent 
intensity inhomoginities can be removed using N4ITk insight 
toolkit [30]. Min-Max scaling applied to standardise the 
dataset in the range of 10 to 110 voxel intensity values. 
Further, using mean and standard deviation values of 
intensity of voxel, z-score normalisation were applied 
between 0 and 1 for each voxel before feeding to the 
network.  

To prevent overfitting of the model during training, 3D 
mirroring, random 3D rotation between 0 to 45° and random 
elastic deformation were applied with 50 % probability of 
combination of augmentation. 

3.3 Model Architecture  

The overall architecture of the proposed method is displayed 
in figure 3. The framework includes two blocks; Generator for 
development of synthetic image and discriminator for 
comparing the output with ground truth.  

The generator is an encoder-decoder based architecture, a 
modified 3D UNet architecture with concatenated skip 
connections [23]. In the Downsample block consist of 
convolution, batch Normalization and leaky ReLU. 
Convolution is performed on input through several filters 
with fixed kernel size 4 and stride 2. Batch normalization 
prevents vanishing gradient and leaky ReLU used as an 
activation function. The Upsampling block made of four 
layers, transposed Convolution, Batch Normalization, 
Dropout, and ReLU. In transposed convolution, image is 
stitched and convolved to enlarge the size. Dropuout is useful 
in preventing overfitting, and ReLU is used as activation 
function which stops the saturation. The framework of 
generator block is shown in figure 3, with all the sub-blocks 
included in Downsampling and Upsampling blocks.  
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Fig -3: Generator framework with encoder decoder 
architecture, consisting of downsampling and upsampling 

blocks on both side respectively. 

The discriminator is PatchGAN [24] consisting of four 
discriminating blocks followed by zero padding and 
convolution. Each discriminating blocks composed of 
Convolution, Batch Normalization, and Leaky ReLU. The 
convolution in discriminator block having filters from size 60 
to 512 and Batch normalization applied after the first block. 
Convoluting is performed after discriminative block followed 
by zero padding, with kernel size 4 and stride 1. The 
discriminator framework is displayed in figure 4. 

 

Fig -4: Discriminator framework with four discriminator 
blocks followed by zero padding and convolution, giving 

binary output 

3.4 Losses  

The generator and discriminator architecture use loss 
function as suggested in [22], written as loss; 

 

 

Where x is concatenation of three inputs sequence and G(x) 
symbolize guess generated by GAN. Dummy loss function 

 generated with all values one, used by generator loss 

and  are L1 norm (absolute error) and L2 norm (mean 

square error) respectively.  is used as null tensor.  

4. RESULTS 

4.1 Implementation Details 

Pytorch [31] and TensorFlow [32] are implemented using 
python 3.6 to implement the proposed algorithm. NVIDIA 
Quadro P5000 GPU 64 bit RAM computing system used for 
training, validation and testing of model. The 3D UNet 
network was initially trained on 295 images with 80:20 
rations for training and validation. Later the network was 
trained on 369 images, followed by validation on 125 images 
and tested on 166 unknown images from BraTS dataset. Dice 
Similarity score, simply known as dice, and Hausdorff 
distance (95th percentile) were evaluated.   

4.2 Evaluation Parameters  

Augmentation Quality 

The first metrics we considered aim at assessing the quality 
of the whole images generated. To compute these metrics we 
first had to crop and normalize the images as follows. We 
center-cropped the generated images to 155x194, which is 
the size of the largest bounding box to contain each brain in 
the BraTS2015 dataset [26]. Then, we applied mean 
normalization [33] to each image for generated or real, and 
computed the following three metrics: (i) the mean squared 
error (MSE), (ii) the Peak Signal-to-Noise Ratio (PSNR) [34], 
and (iii) the Structural Similarity (SSIM) [35]: 

 

 

 

Where, W and H are the width and height of the images. I and 

are the real and generated image respectively.  , and  

are the pixel values of respectively the real and generated 
images; μ is the average of pixel values, σ2 is the variance of 

pixel values, and is the covariance of and I pixel 

values. Both MSE and SSIM have values between 0 and 1. 
Lower values of MSE mean a better quality of the generated 
image. Instead, the greater the SNR and SSIM are, the better is 
the quality. 
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Model Performance 

Evaluation of segmentation performance can be measured 
with the Sorensen–Dice index also known as the Dice 
Similarity Coefficient (DSC) of simply Dice [35]. DSC 
represents the degree of overlap between predicted region 
map and ground truth and calculated using equation 5 as; 

 

Where, notations TP, FP and FN are True Positive (TP), False 
Positive (FP) and False Negative (FN) respectively. 

Hausdorff distance measures the maximum distance of one 
set to the nearest point in the other set [18], defined as: 

 

Where, sup and inf represents the supremum and the 
infimum among the considered sets. Hausdorff distance at 
95th percentile (HD95) is considered to avoid noisy 
segmentation and achieve more robust results the 
evaluation scheme uses the 95th percentile. 

4.3 Augmentation Evaluation  

Three MRI sequences given as input to the generator 
network and the output are passed through the 
discriminator. i.e. T1ce, T2, and FLAIR input given for 
generation of T1 scan. Four such experiments were 
performed to find all the missing modality generation in the 
current scenario. The passes outcome is evaluated with MSE, 
PSNR, and SSIM for whole brain MRI scan. The MSE and 
PSNR parameters also been calculated for tumor regions. 
Table 1 and 2 demonstrates the results for different 
modalities for values of evaluation parameters for whole 
image and tumor region respectively. 

Table -1: Evaluation of augmented whole image 

Modality MSE PSNR SSIM 

T1 0:0041 ± 0:0038  25:2569 ± 3:6512 0:8472 ± 0:0830 

T1CE 0:0054 ± 0:0040  23:9242 ± 3:6958 0:8027 ± 0:1003 

T2 0:0077 ± 0:0061  22:3719 ± 3:5290 0:7835 ± 0:1141 

FLAIR 0:0072 ± 0:0050  22:5524 ± 3:5655 0:7610 ± 0:1175 

 
Table -2: Evaluation of tumor region from augmented image  

Modality MSE PSNR 

T1 0:0113 ±0:0099  20:8938 ± 3:6111 

T1CE 0:0168 ± 0:0172  19:8441 ± 4:6258 

T2 0:0207 ± 0:0167  18:1305 ± 3:5930 

FLAIR 0:0221 ± 0:0375  19:0374 ± 4:1582 

Lower values of MSE mean a better quality of the generated 
image. Instead, the greater the SNR and SSIM are, the better is 
the quality. Mean value of MSE for the generated modalities 
as displayed in table 1 is evident that the performance of GAN 
method proposed here is acceptable. All three parameters 
indicate almost equal behaviour for all modalities. The 
similarity of T1 and T1ce considered being better to T2 and 
FLAIR images. The variation in the results may be due to class 
imbalance in the input dataset and the inherent radiomic 
properties of images. The results might be improved on 
consideration of only two related modalities instead of three 
input channel considered here.  

The dice similarity coefficient (DSC) also referred as dice and 
Hausdorff distance (95th Percentile) were calculated from 
ground truth and the synthesized image to find the 
applicability of proposed method in the brain tumor 
segmentation. Table 3 demonstrate the performance of 
model trained with synthetic MRI scans in training, 
validation and Testing   and table 4 compared with the 
existing state-of-the art methods. 

Table -3: Performance of model using synthetic MRI scans, 

Method 
Dice Hausdorff (mm) 

WT TC ET WC TC ET 

Train 0.91 0.89 0.79 3.66 3.52 30.04 

Valid 0.89 0.79 0.75 6.39 14.07 36.00 

Test 0.87 0.81 0.78 6.44 24.36 18.95 

 
The mean values of Dice and Hausdorff represents the 
performance of modified 3D Unet network model of 
synthetic images of each modality generated using the 
proposed method. The values in test phase are low, which 
can be considered as the actual performance on unknown 
dataset. The dice and Hausdorff values are comparatively 
declining in TC and ET region respectively, due to tissue 
infiltration in the input images.   

Table-4: Performance comparison with state-of-the art 
methods. 

Method 
Dice Hausdorff (mm) 

WT TC ET WC TC ET 

3D UNET [6] 0.84 0.83 0.76 7.37 11.15 26.78 

Modified 3D Unet [23] 0.83 0.82 0.74 5.34 11.34 23.29 

Proposed Method 0.87 0.81 0.78 6.44 24.36 18.95 

 
The proposed method is compared with most adopted 
Convolutional Network (CNN) architecture basic 3D Unet 
and modified 3D Unet. The method considered in this work 
also use modified 3D Unet. For comparison, in the 3D Unet 
and modified 3D Unet, the input provided without any 
modification of original dataset. Whereas the proposed 
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method takes input of original dataset along with synthetic 
data, which makes the data size double fold here. The 
improvement in the results for dice values 0.87, 0.81, and 
0.78 for WT, TC, and ET respectively, due to increase in the 
data size.  

The qualitative result of each of the modality is representing 
in figure 5 as a sample for one of the subject from the 
dataset. 

 

Fig -5: MRI modalities generated from the proposed 
framework, displayed in transverse and coronal plane. 

5. CONCLUSIONS 

Generator-discriminator framework from synthesis of MRI 
imaging modality has been discussed. IN the suggested 
method, the generator use modified 3D Unet architecture. In 
BraTS2020 dataset, four modalities are included namely; T1, 
T1CE, T2, and FLAIR. The generator network fed with any 
three images of different modality and it produce the 
remaining modality image as an output. The discriminator 
use PatchGAN framework and distinguish the output from 
the available ground truth. Three parameters, MSE, PSNR, 
and SSIM used to find the suitability of outcome. The image 
developed with this framework show low mean value of MSE 
and higher values of PSNR and SSIM. The results suggest to 
adopt the synthetic image can be considered as cohort of 
input image. Further, the generated images of different 
modalities are used along with the original dataset for brain 
tumor segmentation application using Modified 3D Unet. By 
making the data volume double, with original and synthetic 
data, performance of the model improved with dice value of 

0.87. 0.81. and 0.78 for WT, TC, and ET respectively.  
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