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Abstract - Managing capacity in systems operating at scale 
poses significant challenges, making it difficult to proactively 
plan for potential capacity issues. Scaling critical systems in 
response to capacity limitations entails risks and can lead to 
stressful situations. To address this concern, this paper 
presents a novel forecasting system designed to proactively 
predict capacity issues. By adopting this proactive approach, 
organizations can mitigate the likelihood of encountering such 
situations and ensure the seamless performance of their 
stateful systems. The proposed forecasting system offers 
valuable insights, enabling timely resource allocation and 
efficient management to maintain optimal system operations. 
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1. INTRODUCTION 

In the contemporary digital landscape, the operation of 
large-scale systems has become an integral part of modern 
business and technology ecosystems. These systems, often 
characterized by their complexity and scale, underpin critical 
services, from cloud computing platforms to e-commerce 
websites, from financial institutions to social media 
networks. Ensuring the uninterrupted performance of these 
systems is not merely a matter of operational efficiency; it is 
a strategic imperative for organizations worldwide.  

1.1 Importance of Capacity Planning 

Capacity planning is very critical for organizations that 
operate at scale. Here are some of the reasons why capacity 
planning is critical: 

1. Optimal resource allocation: Capacity planning 
guarantees that systems have adequate computing 
power, storage capacity, network bandwidth, and 
CPU resources available, thereby preventing 
overprovisioning or underutilization of these 
resources. 

2. Cost: Running systems at scale can lead to 
substantial infrastructure costs. However, by 
implementing effective capacity planning, 
organizations can control and manage these costs 
efficiently. 

3. Performance: Effective capacity planning ensures 
that one plans and scales the systems for peak 
usage. This ensures that your systems remain 
performant even during peak periods. 

4. Handling seasonal spikes: It is essential to consider 
occasional spikes and seasonal fluctuations in 
traffic, such as increased activity during holidays, 
when designing your system. 

5. Meeting SLAs: Adequate provisioning of systems is 
necessary to ensure they meet user SLAs, such as 
latency and throughput requirements. 

Large-scale automated systems, whether in a datacenter or 
the cloud, can encompass thousands of nodes. These nodes 
generate diverse time-series metrics, such as disk usage, 
memory usage, and total network traffic, which provide 
operational insights.  It can be very difficult to manually 
track this data and identify patterns and look for capacity 
issues before it happens. In summary, capacity planning is 
not merely a technical exercise but a strategic imperative for 
organizations. It ensures that resources are allocated 
efficiently, risks are mitigated, and the organization is well-
prepared to adapt to changing circumstances and demands, 
ultimately contributing to overall success and sustainability. 

1.2 Literature Survey 

Sanjeev Vijaykumar et al. [1] developed workload 
forecasting using neural network and artificial lizard search 
optimization. They conducted experiments using a 
benchmark of Google cluster trace. E.G.Radhika et al., [2] 
developed forecasting techniques to autoscale web 
applications using auto-regressive integrated moving 
averages and Recurrent neural network-long short-term 
memory (RNN-LSTM) techniques. They found that RNN-
LSTM gives a lower error rate compared to using ARIMA.  
Yexi Jiang et al., [3] proposed an intelligent cloud capacity 
management system using IBM smart cloud trace data. They 
used the ensemble method for forecasting. M.S. Aslanpour et 
al., [4] developed the proactive auto-scaling algorithm PASA 
with heuristic predictor and ran the simulations in cloudSim. 
There are various other models developed for forecasting 
cloud resources, but they do not reflect actual user 
interactions [5] that happen in the real world, and all are 
designed to work in the cloud. 
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2. Proposal 

We propose a generic system that would adapt according to 
usage pattern changes, resources usage and forecast any 
capacity issues beforehand.   This system can work in the 
cloud as well as in non-cloud deployments.  

2.1 Architecture Diagram 

In the diagram below, we show the overall architecture of 
the system we are proposing: 

 

Fig 1: Proposed Forecasting system 

3. The entire system can be broken down into 
following 7 components  

3.1  Data Collection (telemetry) 

In order to discern the typical trends of a metric within a 
stateful system, it becomes imperative to establish a means 
of acquiring the pertinent metrics for predictive analysis. 
This can be accomplished either by leveraging an existing 
telemetry system or by configuring a tailored agent designed 
to collect the precise metrics required for forecasting 
purposes. Frequently, summarized metrics like minimum or 
maximum values, collected over extended intervals such as 
daily or hourly, prove sufficient for forecasting trends over 
time. 

To identify the general pattern of a metric in a stateful 
system, it is essential to have a method for capturing the 
desired metrics for prediction. This can be achieved by 
utilizing an already deployed telemetry system or setting up 
a custom agent to gather the specific metrics needed for 
forecasting. In many instances, aggregated values (such as 
minimum or maximum) collected over an extended period 
(daily or hourly) suffice to predict the trend over time. 

3.2 Stateful system metadata 

This system is used to store metadata like SLOs and 
thresholds for the systems.  

3.3 Data Aggregation 

Data collection and collation is one of the most important 
parts of this entire process. Without good and reliable data, 

we cannot have good predictions. The method of aggregation 
over the data is just as important. For a given metric, we can 
have hundreds of time series for a stateful system which is 
scaled up anywhere from a few single digit nodes to 
hundreds of nodes. We tested various data aggregation 
methods to come up with a single reliable time series to feed 
into the forecaster. We found that the aggregation that gave 
us the most accurate prediction results over a period of time 
was to take the mean of the metric, for which we have the 
max of the timeseries for every given node in the system. 
This produced the most actionable results for us, rather than 
just taking the average or the max across the entire system. 
This stage joins data from the telemetry data from the data 
collection stage and the system metadata. 

3.4. Data storage 

The data gathered from the data collection processes 
undergoes an ETL (Extract, Transform, Load) process and is 
then consolidated and stored in a centralized database. 
When the data collection agent operates on multiple nodes 
within a distributed system, centralizing the data enables 
straightforward querying for the forecasting process. 

3.5. Forecasting and alerting 

We used the Facebook Prophet system in our proposed 
system to predict metric values. Prophet exhibits various 
features that are useful for forecasting metrics for a real-
world application: 
 
Seasonality detection - Prophet can automatically detect and 
handle various types of seasonal patterns, including daily, 
weekly, and yearly seasonality. 

 Holiday effect - It allows you to include custom 
holiday effects that might impact your time series 
data. 

 Capture trend - This allows you to detect upwards 
or downward trends which is critical to predict the 
overall usage over time. The algorithm works well 
in capturing the trend over time and is not very 
efficient in predicting random intermittent spikes in 
a metric. 

 Uncertainty interval - FB prophet provides 
uncertainty intervals for the forecast that helps you 
understand the range of the predictions.  

 Outlier detection - It is very robust in handling 
missing data and outliers. 

 Scalable - The algorithm works very well with large 
datasets. 

FBProphet [6] uses an additive model, which means that the 
components are added together to form the time series. The 
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model then employs a Bayesian approach to fit the 
components to the observed data. The basic equation for 
forecasting algorithm is as follows: 
 
 y(t) = g(t) + s(t) + h(t) + ε(t) 

where: 

 y(t): Observed value at time interval (t) 

s(t): Seasonal component 

h(t): Holiday effect 

ε(t): Noise 

The trend component i.e. g(t) can be modelled using the 
growth trend or the logistic growth trend. The seasonal 
component s(t) includes Fourier series terms to capture 
seasonalities. The holiday effect h(t) allows you to 
incorporate the effect of holidays on the time series data. By 
identifying and accounting for these repetitive patterns, you 
can better capture the underlying structure of the data and 
improve the accuracy of your predictive models. 

Each metric that we generate for any stateful system was 
combined into a single time series and fed to the Prophet 
library to generate a future time series. Generated forecasts 
are fed back again to the data storage layer.  

3.5. Visualization 

We used the forecasted values for building visualizations and 
dashboards to visualize the predicted metric usage in the 
future. 

3.6 Pre-Emptive Scaling 

For any given deployment of a stateful system, for the 
forecasted metric to be actionable, the metric needs to have 
some threshold. This threshold is important to be defined 
and set correctly for the pre-emptive scaling to be effective. 
We regularly run standard benchmarks against the 
datastores and fine tune the thresholds as needed. 

Once we have the forecasted time series, we compare each 
individual data point to figure out if the thresholds will be 
met or crossed anytime in the future. If we find that the 
thresholds are crossed, then we trigger a notification and a 
downstream system that takes care of scaling up the given 
stateful system (outside the scope of this paper). 

4. Testing the system 

We currently have this system in production, and it looks at 
hundreds of stateful clusters across various datastore types 
(Cassandra, Elasticsearch etc.). For all clusters we have 
predefined thresholds and a system in place for data 
collection, aggregation and ingestion into the forecaster. Fig 

1. Below is an example of the graph we generate for the 
admin of our systems to verify that the predictions are 
accurate and how soon we can expect a datastore to hit our 
predefined thresholds. 

 

Fig 2: A graph showing the increase of disk space plotted 
over time. Blue portion is the aggregated data points. The 

Orange portion are the forecasts with upper and lower 
bounds. The horizontal red line is the predefined threshold 

which we would like to avoid reaching. 

5. Case Study: Proactive Capacity Management in 
Large-Scale Machine Learning Environments 

In this section, we delve into a real-world case study that 
exemplifies the critical importance of proactive capacity 
management in large-scale systems. Our case study revolves 
around a comprehensive database of machine learning (ML) 
results, a high-demand computing environment where 
accurate capacity planning is paramount. 

6.1 Background 

In the realm of machine learning research and development, 
the demand for computational resources has surged in 
recent years. Training complex neural networks, processing 
large datasets, and fine-tuning models require substantial 
computational power. This led to the creation of a dedicated 
cluster for ML experiments, serving researchers across the 
organization. However, the dynamic nature of ML workloads 
made it increasingly challenging to predict and manage 
capacity effectively. 

6.2 Challenges in Storage and Computation 

In addition to the challenges previously mentioned, this ML 
environment faced unique challenges related to storage of 
training datasets: 

 Large Datasets: ML experiments often require 
access to extensive datasets, sometimes spanning 
terabytes of data. Storing and managing these 
datasets efficiently while ensuring fast access for 
training jobs was a significant challenge. 
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 Data Transfer Bottlenecks: Moving large datasets to 
and from storage systems could lead to network 
bottlenecks and slow down job execution, affecting 
overall system performance. 

 Data Versioning: Maintaining version control for 
datasets was crucial to ensure reproducibility in 
research. This introduced complexity in data 
storage and tracking. 

6.3 The Proactive Forecasting Solution 

To address these challenges, we extended the proactive 
capacity forecasting system introduced in this paper to 
encompass storage and data-related aspects. This system 
was configured not only to predict compute resource needs 
but also to anticipate data storage requirements for 
upcoming ML experiments. 

7. Results and Impact 

The holistic approach of the forecasting system, covering 
both compute and data aspects, yielded significant benefits: 

 Optimized Data Management: Predictive analysis 
allowed for proactive storage allocation based on 
upcoming job requirements. This reduced data 
transfer bottlenecks and improved data access 
times. 

 Cost-Efficient Storage: With precise predictions, 
storage resources were allocated efficiently, 
reducing storage costs associated with over-
provisioning. 

 Enhanced Data Version Control: The forecasting 
system integrated version control for datasets, 
streamlining data management and ensuring 
reproducibility. 

 

Fig 3: A graph showing the increase of disk space plotted 
over time where the system detected that the disk usage 

would exceed the threshold 30 days in advance. 

8. CONCLUSIONS 

We have demonstrated a method for pre-emptive scaling of 
stateful systems which can be applied to any datastore 
deployed across any environment (local, public cloud, non-
public cloud etc.). This system was successfully able detect 
capacity issues for more than 500 stateful systems at scale 
with an accuracy of almost 86% over 2 years.  
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