
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 160

Forecasting Capacity Issues in Stateful Systems: A Proactive Approach

Anuj Phadke, Parth Santpurkar, Meenakshi Jindal

1Senior Software Engineer, Netflix, USA
2Senior Software Engineer, Netflix, USA
3 Senior Software Engineer, Netflix, USA

---***---

Abstract - Managing capacity in systems operating at scale
poses significant challenges, making it difficult to proactively
plan for potential capacity issues. Scaling critical systems in
response to capacity limitations entails risks and can lead to
stressful situations. To address this concern, this paper
presents a novel forecasting system designed to proactively
predict capacity issues. By adopting this proactive approach,
organizations can mitigate the likelihood of encountering such
situations and ensure the seamless performance of their
stateful systems. The proposed forecasting system offers
valuable insights, enabling timely resource allocation and
efficient management to maintain optimal system operations.

Keywords: Forecasting, Facebook Prophet, Time series,
Capacity management, Pre-emptive scaling

1. INTRODUCTION

In the contemporary digital landscape, the operation of
large-scale systems has become an integral part of modern
business and technology ecosystems. These systems, often
characterized by their complexity and scale, underpin critical
services, from cloud computing platforms to e-commerce
websites, from financial institutions to social media
networks. Ensuring the uninterrupted performance of these
systems is not merely a matter of operational efficiency; it is
a strategic imperative for organizations worldwide.

1.1 Importance of Capacity Planning

Capacity planning is very critical for organizations that
operate at scale. Here are some of the reasons why capacity
planning is critical:

1. Optimal resource allocation: Capacity planning
guarantees that systems have adequate computing
power, storage capacity, network bandwidth, and
CPU resources available, thereby preventing
overprovisioning or underutilization of these
resources.

2. Cost: Running systems at scale can lead to
substantial infrastructure costs. However, by
implementing effective capacity planning,
organizations can control and manage these costs
efficiently.

3. Performance: Effective capacity planning ensures
that one plans and scales the systems for peak
usage. This ensures that your systems remain
performant even during peak periods.

4. Handling seasonal spikes: It is essential to consider
occasional spikes and seasonal fluctuations in
traffic, such as increased activity during holidays,
when designing your system.

5. Meeting SLAs: Adequate provisioning of systems is
necessary to ensure they meet user SLAs, such as
latency and throughput requirements.

Large-scale automated systems, whether in a datacenter or
the cloud, can encompass thousands of nodes. These nodes
generate diverse time-series metrics, such as disk usage,
memory usage, and total network traffic, which provide
operational insights. It can be very difficult to manually
track this data and identify patterns and look for capacity
issues before it happens. In summary, capacity planning is
not merely a technical exercise but a strategic imperative for
organizations. It ensures that resources are allocated
efficiently, risks are mitigated, and the organization is well-
prepared to adapt to changing circumstances and demands,
ultimately contributing to overall success and sustainability.

1.2 Literature Survey

Sanjeev Vijaykumar et al. [1] developed workload
forecasting using neural network and artificial lizard search
optimization. They conducted experiments using a
benchmark of Google cluster trace. E.G.Radhika et al., [2]
developed forecasting techniques to autoscale web
applications using auto-regressive integrated moving
averages and Recurrent neural network-long short-term
memory (RNN-LSTM) techniques. They found that RNN-
LSTM gives a lower error rate compared to using ARIMA.
Yexi Jiang et al., [3] proposed an intelligent cloud capacity
management system using IBM smart cloud trace data. They
used the ensemble method for forecasting. M.S. Aslanpour et
al., [4] developed the proactive auto-scaling algorithm PASA
with heuristic predictor and ran the simulations in cloudSim.
There are various other models developed for forecasting
cloud resources, but they do not reflect actual user
interactions [5] that happen in the real world, and all are
designed to work in the cloud.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 161

2. Proposal

We propose a generic system that would adapt according to
usage pattern changes, resources usage and forecast any
capacity issues beforehand. This system can work in the
cloud as well as in non-cloud deployments.

2.1 Architecture Diagram

In the diagram below, we show the overall architecture of
the system we are proposing:

Fig 1: Proposed Forecasting system

3. The entire system can be broken down into
following 7 components

3.1 Data Collection (telemetry)

In order to discern the typical trends of a metric within a
stateful system, it becomes imperative to establish a means
of acquiring the pertinent metrics for predictive analysis.
This can be accomplished either by leveraging an existing
telemetry system or by configuring a tailored agent designed
to collect the precise metrics required for forecasting
purposes. Frequently, summarized metrics like minimum or
maximum values, collected over extended intervals such as
daily or hourly, prove sufficient for forecasting trends over
time.

To identify the general pattern of a metric in a stateful
system, it is essential to have a method for capturing the
desired metrics for prediction. This can be achieved by
utilizing an already deployed telemetry system or setting up
a custom agent to gather the specific metrics needed for
forecasting. In many instances, aggregated values (such as
minimum or maximum) collected over an extended period
(daily or hourly) suffice to predict the trend over time.

3.2 Stateful system metadata

This system is used to store metadata like SLOs and
thresholds for the systems.

3.3 Data Aggregation

Data collection and collation is one of the most important
parts of this entire process. Without good and reliable data,

we cannot have good predictions. The method of aggregation
over the data is just as important. For a given metric, we can
have hundreds of time series for a stateful system which is
scaled up anywhere from a few single digit nodes to
hundreds of nodes. We tested various data aggregation
methods to come up with a single reliable time series to feed
into the forecaster. We found that the aggregation that gave
us the most accurate prediction results over a period of time
was to take the mean of the metric, for which we have the
max of the timeseries for every given node in the system.
This produced the most actionable results for us, rather than
just taking the average or the max across the entire system.
This stage joins data from the telemetry data from the data
collection stage and the system metadata.

3.4. Data storage

The data gathered from the data collection processes
undergoes an ETL (Extract, Transform, Load) process and is
then consolidated and stored in a centralized database.
When the data collection agent operates on multiple nodes
within a distributed system, centralizing the data enables
straightforward querying for the forecasting process.

3.5. Forecasting and alerting

We used the Facebook Prophet system in our proposed
system to predict metric values. Prophet exhibits various
features that are useful for forecasting metrics for a real-
world application:

Seasonality detection - Prophet can automatically detect and
handle various types of seasonal patterns, including daily,
weekly, and yearly seasonality.

 Holiday effect - It allows you to include custom
holiday effects that might impact your time series
data.

 Capture trend - This allows you to detect upwards
or downward trends which is critical to predict the
overall usage over time. The algorithm works well
in capturing the trend over time and is not very
efficient in predicting random intermittent spikes in
a metric.

 Uncertainty interval - FB prophet provides
uncertainty intervals for the forecast that helps you
understand the range of the predictions.

 Outlier detection - It is very robust in handling
missing data and outliers.

 Scalable - The algorithm works very well with large
datasets.

FBProphet [6] uses an additive model, which means that the
components are added together to form the time series. The

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 162

model then employs a Bayesian approach to fit the
components to the observed data. The basic equation for
forecasting algorithm is as follows:

 y(t) = g(t) + s(t) + h(t) + ε(t)

where:

 y(t): Observed value at time interval (t)

s(t): Seasonal component

h(t): Holiday effect

ε(t): Noise

The trend component i.e. g(t) can be modelled using the
growth trend or the logistic growth trend. The seasonal
component s(t) includes Fourier series terms to capture
seasonalities. The holiday effect h(t) allows you to
incorporate the effect of holidays on the time series data. By
identifying and accounting for these repetitive patterns, you
can better capture the underlying structure of the data and
improve the accuracy of your predictive models.

Each metric that we generate for any stateful system was
combined into a single time series and fed to the Prophet
library to generate a future time series. Generated forecasts
are fed back again to the data storage layer.

3.5. Visualization

We used the forecasted values for building visualizations and
dashboards to visualize the predicted metric usage in the
future.

3.6 Pre-Emptive Scaling

For any given deployment of a stateful system, for the
forecasted metric to be actionable, the metric needs to have
some threshold. This threshold is important to be defined
and set correctly for the pre-emptive scaling to be effective.
We regularly run standard benchmarks against the
datastores and fine tune the thresholds as needed.

Once we have the forecasted time series, we compare each
individual data point to figure out if the thresholds will be
met or crossed anytime in the future. If we find that the
thresholds are crossed, then we trigger a notification and a
downstream system that takes care of scaling up the given
stateful system (outside the scope of this paper).

4. Testing the system

We currently have this system in production, and it looks at
hundreds of stateful clusters across various datastore types
(Cassandra, Elasticsearch etc.). For all clusters we have
predefined thresholds and a system in place for data
collection, aggregation and ingestion into the forecaster. Fig

1. Below is an example of the graph we generate for the
admin of our systems to verify that the predictions are
accurate and how soon we can expect a datastore to hit our
predefined thresholds.

Fig 2: A graph showing the increase of disk space plotted
over time. Blue portion is the aggregated data points. The

Orange portion are the forecasts with upper and lower
bounds. The horizontal red line is the predefined threshold

which we would like to avoid reaching.

5. Case Study: Proactive Capacity Management in
Large-Scale Machine Learning Environments

In this section, we delve into a real-world case study that
exemplifies the critical importance of proactive capacity
management in large-scale systems. Our case study revolves
around a comprehensive database of machine learning (ML)
results, a high-demand computing environment where
accurate capacity planning is paramount.

6.1 Background

In the realm of machine learning research and development,
the demand for computational resources has surged in
recent years. Training complex neural networks, processing
large datasets, and fine-tuning models require substantial
computational power. This led to the creation of a dedicated
cluster for ML experiments, serving researchers across the
organization. However, the dynamic nature of ML workloads
made it increasingly challenging to predict and manage
capacity effectively.

6.2 Challenges in Storage and Computation

In addition to the challenges previously mentioned, this ML
environment faced unique challenges related to storage of
training datasets:

 Large Datasets: ML experiments often require
access to extensive datasets, sometimes spanning
terabytes of data. Storing and managing these
datasets efficiently while ensuring fast access for
training jobs was a significant challenge.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 163

 Data Transfer Bottlenecks: Moving large datasets to
and from storage systems could lead to network
bottlenecks and slow down job execution, affecting
overall system performance.

 Data Versioning: Maintaining version control for
datasets was crucial to ensure reproducibility in
research. This introduced complexity in data
storage and tracking.

6.3 The Proactive Forecasting Solution

To address these challenges, we extended the proactive
capacity forecasting system introduced in this paper to
encompass storage and data-related aspects. This system
was configured not only to predict compute resource needs
but also to anticipate data storage requirements for
upcoming ML experiments.

7. Results and Impact

The holistic approach of the forecasting system, covering
both compute and data aspects, yielded significant benefits:

 Optimized Data Management: Predictive analysis
allowed for proactive storage allocation based on
upcoming job requirements. This reduced data
transfer bottlenecks and improved data access
times.

 Cost-Efficient Storage: With precise predictions,
storage resources were allocated efficiently,
reducing storage costs associated with over-
provisioning.

 Enhanced Data Version Control: The forecasting
system integrated version control for datasets,
streamlining data management and ensuring
reproducibility.

Fig 3: A graph showing the increase of disk space plotted
over time where the system detected that the disk usage

would exceed the threshold 30 days in advance.

8. CONCLUSIONS

We have demonstrated a method for pre-emptive scaling of
stateful systems which can be applied to any datastore
deployed across any environment (local, public cloud, non-
public cloud etc.). This system was successfully able detect
capacity issues for more than 500 stateful systems at scale
with an accuracy of almost 86% over 2 years.

REFERENCES

[1] Sanjeev Vijayakumar, Jitendra Kumar2, “Cloud Resource
Usage Forecasting using NeuralNetwork and Artificial
Lizard Search Optimization”

[2] E.G.Radhika, G.S.Sadasivam, and J.F.Naomi , “An Efficient
Predictive technique to Autoscale the Resources for Web
applications in Private cloud”

[3] Yexi Jiang, Chang-Shing Perng†, Tao Li∗, Rong Chang†,
“Intelligent Cloud Capacity Management”

[4] M. S. Aslanpour and S. E. Dashti, ‘‘Proactive auto-scaling
algorithm (PASA) for cloud application,’’ Int. J. Grid High
Perform. Comput., vol. 9, no. 3, pp. 1–16, Jul. 2017.

[5] MOHAMED SAMIR , KHALED T. WASSIF , AND SOHA H.
MAKADY, “Proactive Auto-Scaling Approach of
Production Applications Using an Ensemble Model”

[6] Taylor SJ, Letham B. 2017. Forecasting at Scale. PeerJ
Preprints 5:e3190v2
https://doi.org/10.7287/peerj.preprints.3190v2

9. BIOGRAPHIES

1. Anuj Phadke is Senior Software Engineer at Netflix.
He received his Master’s degree in Computer
Engineer from Stony Brook University. His areas of
interest include distributed systems and databases.

2. Parth Santpurkar is a Senior Software Engineer at
Netflix. He received his Master's Degree in
Information Assurance from Northeastern
University. His primary areas of interest are
Distributed systems and Software Engineering.

3. Meenakshi Jindal is a seasoned software engineer
with experience designing software solutions across
multiple domains, including banking, insurance,
travel, and media. She specializes in designing high-
performance, scalable, and reliable distributed
systems

https://doi.org/10.7287/peerj.preprints.3190v2

