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Abstract - The field of phytoplankton imaging and 
detection has emerged as a significant area of inquiry for the 
past twenty-five years. This is evidenced by the abundance of 
datasets that contain numerous images of these microscopic 
organisms. However, a major challenge that hinders the 
progress of this field is the presence of noise in these images, 
which originates from two sources: the bioluminescent 
interference caused by the phytoplankton themselves, and the 
electronic noise associated with the imaging equipment. These 
noise types can directly impact ecological studies, due to the 
degrade of performance in machine learning models for 
classifying phytoplankton species. The aim of this research is 
to explore the use of a custom Convolutional Neural Network 
(CNN) to perform the task of image denoising. Our 
methodology involved training the CNN on a dataset 
comprising of 10,524 noisy phytoplankton images and 
evaluating it using standard metrics. Our model achieved a 
Peak Signal-to-Noise Ratio (PSNR) of 32.08 dB, followed by a 
Structural Similarity Index (SSIM) of 0.9788. These values are 
indicative of the effectiveness of our model in successfully 
removing undesired noise from the given images. We hope that 
this research serves as a starting point for further exploration 
and improvement.  
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1.INTRODUCTION 
 

Phytoplankton, often termed the “lungs of the ocean,” are 
indispensable to marine ecosystems. As primary producers, 
they contribute significantly to marine primary production, 
converting vast amounts of carbon dioxide into organic 
carbon through photosynthesis [1]. This process not only 
acts as a sink for CO2, an important factor in global carbon 
cycling, but also produces oxygen essential for marine and 
terrestrial life. Phytoplankton's role extends beyond carbon 
cycling. They are pivotal in other biogeochemical processes, 
influencing cycles of nitrogen, phosphorus, and sulphur, 
among others. For example, certain phytoplankton species 
are involved in nitrogen fixation, converting atmospheric 
nitrogen into a form usable by other marine organisms, 
thereby enriching the nutrient content of ocean waters [2]. 

 
 

Fig -1 Usage of our CNN model. Top row represents the noisy 
images, while bottom row depicts the corresponding denoised 

outputs. 
 

Additionally, these microscopic organisms form the base 
of the marine food web. By converting inorganic nutrients 
into organic matter, they provide the primary food source 
for a wide range of marine organisms, from tiny zooplankton 
to larger filter-feeding whales [3]. Their abundance, 
distribution, and health directly impact the availability of 
food for subsequent trophic levels and can influence the 
abundance and health of fish stocks that many global 
economies rely on. 

 
Given their diversity, phytoplankton can be categorized 

into various groups, each with its unique set of 
characteristics. Some of the prominent groups include 
diatoms, known for their siliceous cell walls; dinoflagellates, 
many of which can produce toxins leading to harmful algal 
blooms; and cyanobacteria, some species of which are 
responsible for nitrogen fixation in marine environments [4].  

 
Understanding the ecology, physiology, and distribution of 

these groups is essential for predicting how changes in the 
marine environment, such as ocean warming or acidification, 
might impact marine ecosystems at large. This prediction 
underscores the necessity for robust monitoring 
mechanisms. Consequently, remote sensing techniques like 
satellite measurements of surface chlorophyll-a 
concentration have provided unparalleled insights into 
phytoplankton variability at global scales [5]. Such 
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observations have shed light on both the spatial and 
temporal changes in phytoplankton biomass, from their 
predictable seasonal cycles to fluctuations caused by oceanic 
phenomena like upwelling.  

 
However, interpreting these images is often met with 

challenges due to noise [6]. While electronic noise from 
imaging equipment is a recognized issue, it's essential to 
correctly understand and represent potential biological 
interferences [7], [8]. To enhance the accuracy of species 
classification and address these challenges, our research 
proposes the use of CNNs, the details of which will be 
elaborated upon in the subsequent sections. 

 

2. RELATED WORK 
 

To the best of our knowledge, there has not been any 
study specifically aiming to denoise microscopic images of 
phytoplanktons as of yet.  However, there have been studies 
focusing on the identification, segmentation, and 
classification of these organisms using both traditional 
algorithms and neural networks.  

 
One noteworthy study  [9] looks into the development of a 

computer-based image processing technique for automated 
detection and classification of a handful of algae genera. 
Their approach involved image preprocessing, feature 
extraction, and classification through artificial neural 
networks (ANNs). While successful in classifying algae 
genera from various divisions, they encountered significant 
noise challenges. Their solution involved traditional image 
processing algorithms, such as median filtering, for noise 

reduction; their primary target being the recognition of 

freshwater algae. This highlights a potential research gap in 
the application of deep learning techniques for denoising 
such images. 

 
Another group of researchers introduced an automatic 

identification method for harmful algae using multiple 
convolutional neural networks and transfer learning [9]. A 
key aspect of their methodology was the employment of 
image augmentation techniques, specifically noise addition, 
to counteract imbalanced datasets. While this augmentation 
technique likely improves model robustness by introducing 
more variability, it simultaneously highlights the importance 
of efficient denoising techniques. Intentional addition of 
noise to datasets for training can potentially result in real-
world images being confounded with augmented noise 
during analysis. This raises the need for advanced denoising 
techniques, ensuring the model isn't misinterpreting or 
misclassifying due to the artifacts introduced during 
augmentation.  

 
Previous studies have also explored the use of CNNs for 

denoising in CT imaging, highlighting both their potential 
and the associated challenges [11]. A primary concern raised 
was the ability of CNNs to generalize across varied data. If 

not trained with diverse and representative data, CNN 
models can become overly specific to their training set and 
fail to generalize across different clinical conditions. 
Although the field of medical CT scanning differs from that of 
phytoplankton microscopy, the underlying challenges of 
image clarity and interpretability are shared. In our 
research, employing CNNs to denoise microscopic images of 
phytoplankton, we took into account the challenges 
highlighted by Huber et al. As a solution, we trained our 
model on an extensive dataset of 10,524 images. By carefully 
designing our model architecture and employing 
regularization techniques, we aimed to promote 
generalization and reduce overfitting, thereby enhancing the 
model's applicability in real-world scenarios. 

 
Further work has been conducted in the field of image 

denoising for various applications. For instance, a study done 
in 2019 introduced a CNN-based approach for denoising 
stimulated Raman scattering (SRS) microscopy images, 
which are commonly used in biomedical and chemical 
research [12]. They highlighted the use of CNNs in denoising 
nonlinear optical images, specifically SRS images. 
Additionally, other deep learning methods have also been 
successfully applied to denoise diverse image types, 
including retinal microvasculature images obtained through 
optical coherence tomography angiography [13], and 
astronomical images [14].  

 
While these methodologies provide valuable insights, 

there is limited research specifically targeting the denoising 
of phytoplankton images, or other microscopic marine algae 
for that matter. Our work aims to fill this gap and further the 
field's understanding of image denoising techniques for 
marine microscopic organisms. 

 

3. METHODOLOGY 
 

 
(a) 

 
(b) 

Fig -2: (a) Architecture of our CNN model and the step-by-
step pipeline of the denoising process. (b) The encoder-
decoder blocks constituting the autoencoder structure. 
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We structured our methodology into distinct stages: 1) data 
gathering, 2) image preprocessing to ensure compatibility 
with the neural network, 3) introducing noise types 
(Gaussian, salt and pepper, and speckle) to create training 
data, and 4) training our model using these noisy images and 
evaluating its performance across standard metrics. 

3.1. DATASET GATHERING 

 We gathered data from the WHOI-Plankton dataset, 
which is popular for its comprehensive collection of 
phytoplankton species, consisting of 103 distinct classes. 
Given the limited prior research specifically focused on 
denoising such data, we identified this dataset as particularly 
suitable for our objectives. From this dataset, we extracted a 
subset of 10,524 images, striving to represent all the classes 
uniformly. This raises the need for standard image 
preprocessing practices, ensuring the model isn't 
misinterpreting or misclassifying due to any 
incompatibilities. 

First, we resized all the data to a standard size of 64x64 
pixels to ensure high scalability and efficiency while also 
balancing the trade-off with accuracy. Furthermore, we 
normalized all the images in our dataset to a range of pixel 
values between 0 and 1. Normalization serves several 
purposes. It accentuates the contrast and brightness of 
images, bringing forth details and features potentially 
concealed in the original image [15]. It ensures image 
comparability; consistent pixel values allow for meaningful 
contrasts between different images or within specific regions 
of the same image. Moreover, adjusting to a standardized 
pixel distribution minimizes the influence of outliers and 
amplifies the image's overall quality [16]. 

3.2 INTRODUCING NOISE 

Having established the data gathering and normalization 
process, our next focus was to introduce realistic noise to the 
dataset to simulate the challenges typically encountered in 
microscopy. The noise introduction was facilitated by a 
composite function, capable of inducing three distinct types 
of noise: Gaussian, salt and pepper, and gamma speckle. 

1. Gaussian Noise: We utilized a normal distribution 
with a mean of zero and a standard deviation of 0.1 to 
produce Gaussian noise, which models electronic 
interference during the acquisition process [17]. 

2. Salt and Pepper Noise: This type of noise introduced 
extreme values (either completely white or 
completely black pixels) at random locations [18]. 
Our function introduced this noise such that 
approximately 0.5% of the image pixels would be 
affected, modelling artifacts such as dead pixels or 
impulsive noise. 

3. Gamma Speckle Noise: Gamma noise is applied 
multiplicatively, modulating the original pixel values. 
It can emulate inconsistencies introduced during the 
image acquisition process, especially when using 
certain types of sensors. 

Once the noise was added, the image data was split into 
training, validation, and test sets, using an approximately 70-
15-15% distribution. This ensures that our CNN model has a 
diverse range of data for learning, validating 
hyperparameters, and evaluating final performance. The 
following section shows in detail how the model was trained. 

 

Fig 3. Introduction of different types of noise to the 
original image. From left to right: the original image, 

Gaussian noise, salt-and-pepper noise, and speckle noise. 

3.3 EXPERIMENTAL DETAILS 

This section details the methodology used for denoising 
images. For our experiments, we employed a Denoising 
Autoencoder, a model designed to reconstruct input data by 
learning to represent its noise-free version. The encoder 
captures the essential features of the noisy image, and the 
decoder reconstructs the denoised image from these features. 

 Encoder: 

1. Convolutional layer with 64 filters of size 3×3, 
followed by ReLU activation. 

2. Max-pooling with a 2×2 kernel. 
3. Another convolutional layer with 128 filters of 

size 3×3, followed by ReLU activation. 
4. Max-pooling with a 2×2 kernel. 

Decoder: 

1. Transpose convolutional layer with 64 filters of 
size 2×2, followed by ReLU activation. 

2. Another transpose convolutional layer with a 
single filter of size 2×2, followed by a Sigmoid 
activation. 

The architecture was selected based on the need to 
balance model complexity with the computational efficiency, 
in order for the accurate representation of noise-free images. 
The model was trained using the Mean Squared Error (MSE) 
loss function. It quantifies the average squared difference 
between the predicted and true values. This squaring 
inherently penalizes larger errors more, thus ensuring that 
the model is driven to reduce significant deviations. This 
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makes MSE a robust choice for tasks that demand precision, 
such as ours.  

 
We opted for the Adam optimizer due to its proven 

computational efficiency, low memory demands, and 
adeptness at managing large datasets and numerous 
parameters. Specifically, for denoising tasks, Adam has 
demonstrated superior performance against several 
algorithms, especially in scenarios with high-intensity noise. 
While the initial choice was a learning rate of 0.0001, our 
preliminary trials indicated that a reduced rate of 0.00001 
provided improved convergence. This adjustment aligns 
with findings suggesting that overly aggressive learning 
rates in Adam might negatively influence the learned 
features of the model. For model evaluation, we used the 
following metrics: 

 
1. PSNR (Peak Signal-to-Noise Ratio): A metric that 

measures the peak error between the original and the 
compressed image, indicating the quality of 
reconstruction. 
 

2. SSIM (Structural Similarity Index): This quantifies 
image quality degradation as perceived changes in 
structural information. 
 

3. CNR (Contrast-to-Noise Ratio): Measures the contrast 
between a signal and background noise in images, 
offering insights into image clarity. 

 

 

 (a) 
 

 

 (b) 
 

 

(c) 
Fig -4: Training loss, PSNR, and SSIM metrics over each 
epoch for three denoising conditions: (a) Gaussian, (b) 

Salt-and-pepper, and (c) Speckle. 
 

Training was conducted for 50 epochs. We implemented 
early stopping with a patience of 10 epochs, meaning if the 
validation loss did not show a significant improvement (a 
delta of 0.001) for 10 epochs, the training will be terminated.  
Convergence, as evidenced by flattening loss and metrics, 
was observed after 26 epochs across all noise conditions. 
 

4. RESULTS 
 

Phytoplankton imaging often encounters various types of 
noise, each presenting unique challenges to image analysis. 
Three of the most common noise types: Gaussian, Salt and 
Pepper, and Speckle, are of significant interest in our 
research. Our model's performance against these noise types 
provides crucial insights into its accuracy and adaptability. 
Our CNN was trained over 50 epochs using a dataset of 
10,524 noisy phytoplankton images. The dataset was 
partitioned into training, validation, and test sets with 7,366, 
1,579, and 1,579 images, respectively, according to a 70-15-
15 split ratio. The variations in training loss, PSNR (Peak 
Signal-to-Noise Ratio), and SSIM (Structural Similarity Index 
Measure) as the model progresses through each epoch are 
presented in Fig -4.  

 
 Gaussian noise, frequently a result of electronic 

interference during the image acquisition process, is a 
prevalent noise type in phytoplankton imaging. The model 
exhibited a PSNR of 32.08 dB and an SSIM of 0.9788 when 
handling Gaussian noise. Salt and Pepper noise is 
characterized by sporadic white and black pixels, potentially 
arising from abrupt disruptions in the image signal. The 
model achieved a PSNR of 31.83 dB and an SSIM of 0.9800 
for this noise type. However, the model's performance 
against Speckle noise, originating from graininess or 
inconsistencies in the imaging medium, was reduced. This 
reduction in performance signifies the complexity of 
handling Speckle noise. For this type of noise, the CNN 
achieved a PSNR of 23.55 dB and an SSIM of 0.8200.  
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 An illustrative figure of our model's predictions when 
exposed to different noise types is shown in Fig -5: Each 
subfigure consists of three images: starting with the noisy 
input image, followed by the model's denoised output, and 
concluding with the ground truth. This side-by-side 
comparison accentuates the model's efficacy and provides a 
stark visual representation of the noise reduction achieved. 
From the above, it's evident that our model exhibits 
competent performance across all three noise conditions. 
However, each noise type poses distinct challenges, and 
while the model handles Gaussian and Salt and Pepper 
noises with remarkable proficiency, there's a noted decrease 
in performance metrics for Speckle noise. The performance 
of our model on different noise conditions, namely Salt and 
Pepper, Speckle, and Gaussian, was assessed. The metrics 
used for evaluation were Test Loss, PSNR (Peak Signal-to-
Noise Ratio), SSIM (Structural Similarity Index), and CNR 
(Contrast-to-Noise Ratio). 

 
 
Fig -5. A figure representing our model's predictions when 

exposed to different noise types. 
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The performance of our model on different noise conditions, 
namely Salt and Pepper, Speckle, and Gaussian, was 
assessed. The metrics used for evaluation were Test Loss, 
PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural 
Similarity Index), and CNR (Contrast-to-Noise Ratio). The 
results are tabulated below: 
 

Table -1: Comparison of performance 
 

Noise type 
PSNR SSIM CNR 

Gaussian     32.08 0.97 6.22 

Salt and Pepper 
31.83 0.98  4.19 

Speckle  
23.55 

0.82 
 2.39 

  

 

Chart -1: Evaluation of our model’s performance on three 
separate noise conditions. 

 

5. CONCLUSION 
 
One of the primary obstacles faced by researchers in the field 
of phytoplankton imaging is the degradation of image quality 
due to inherent noise. This noise, emerging from both the 
bioluminescence of the phytoplankton and the electronic 
equipment, can compromise the accuracy of machine 
learning models aimed at classifying these species. In this 
paper, we addressed the challenge of image noise by 
deploying a custom Convolutional Neural Network (CNN) for 
image denoising. We look forward to further investigations 
and collaborations that will build upon our work and drive 
forward the field of phytoplankton research. 
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