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Abstract: One of the main sources of algebraic structures that illustrates basic concepts of modern algebra, is theoretical 
physics where there are many well-known algebraic structures used as the Lie groups, rotation groups, and “Algebra of color” 
proposed by Domokos as a candidate for the algebra obeyed by quantized field describing quark and leptons. We wish to 
investigate the nonassociative Grassmann and symmetric algebras. Z. OZIEWIOZ and C. SITARCZYK in [8], (non-published) 
started with the pair of the mutually dual Grassmann and symmetric algebras with the full set of the interior and exterior 
Grassmann and symmetric (bosonic) multiplications. They investigate the non-associative Grassmann algebra by combining 
the exterior and interior products for the Grassmann and symmetric algebra in one product on the Z-graded vector space 
(with no positive gradation).In this paper, we derived a new multiplication rule for this algebra and gave the complete tables 
of multiplication in dimensions 3, 7, and 15. 

Keywords: Grassmann Algebra, nonassociative Algebra, Z-graded vector spaces, The thp   exterior power Vp  of 

finite–dimensional vector space. 

Literature Review: Herman Grassmann was a schoolteacher in StettinGermany who did remarkable work in mathematics 
and the theory of languages. He created an algebra of Geometry which we are concerned with here. Grassmann wrote two 
books on the subject, one in 1844 and the second one in 1862. They were “The Theory of Extension”(meaning extension to 
higher dimensions in space. These two books received little notice before his death in 1877 when he received an Honorary 
Ph.D. a year before his death. Nevertheless, since then many good mathematicians have taken notice of Grassmann’s work. 
William Clifford knew it and wrote a variant now called Clifford Algebra [3]. Alfred North Whitehead studied it and wrote “A 
Treatise on Universal Algebra which was an exposition of Grassmann’s work in English. Elie Caratan use Grassmann’s exterior 
product to develop differential forms and exterior derivatives and applied them to differential geometry. Willard Gibbs knew 
and admired Grassmann’s algebra but helped devise a different vector Analysis that became the mainstay of technical 
education for over a century. John Browne was doing an engineering Ph.D. when he discovered Grassmann Algebra and fell in 
love with it. He switched to the mathematics department and his thesis to Grassmann algebra. It was voted the best thesis of 
the year. John spent the rest of his life deepening, extending, and clarifying Grassmann's algebra where he wrote three books, 
[14,15,16]. John died in June 2021. 

Introduction: Let V be a vector space over a field F. The Grassmann algebra of V, denoted by V , is the linear span (over F) 

of products rvvv  .....21 where .Vvi  Each term in a member of V has a degree, which is the number of vectors in 

the product: .)...deg( 21 rvvv r  We agree that, by definition, the elements of the field F will have degree equal to 0. 

The product is associative and bilinear, also it is very nilpotent: .0 Vvallforvv  Furthermore, the product is anti-

commutative that is ., Vwvallforvwwv  We wish to investigate the nonassociative Grassmann and symmetric 

algebra. We start with the pair of the mutually dual Grassmann and symmetric algebras with the full set of the interior and 
exterior Grassmann and symmetric (bosonic)multiplication. The symmetric algebras are related by the permanent, in 

the analogy to the Grassmann case where the mutually dual Grassmann algebras are related by the determinant. Our study is 
motivated by the symplectic Clifford algebras which has been introduced by Albert Crumeyrolle in 1975, in full analogy to the 
usual presentation of Clifford algebras for the pseudo-Riemannian structures. 
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1. THE CREATION:  

           Throughout this paper we consider

....,lg, etcebrasaspacesvector  ,      (for 

simplicity) however all results are valid for reasonably any 

ring  (unitary, associative, and commutative). The 

Grassmann (exterior) FG  and symmetric 

ebrasaGB lg,  are generated by the 

,, BF LandLspacesvector where the subscript F 

refers to the fermionic (skew-symmetric) case and B 
denotes the bosonic case. Often we will omit the subscripts 
and then G and his generating vector spaces L could refer 
to both (skew-symmetric and symmetric) cases. The 
generating space L could be interpreted as linear space of 

all one-fermion ( FL ) or one-boson ( BL ) states, however, 

we do not fix yet any of the Hilbert or Hermitian structures 

on L. The subspaces
1G , of degree one element in the 

algebra G, and ,1 GG  coincide with the generating 

space, 
1G = L in both F and B cases. We denote the dual 

space by   GandLHomLG ),(1 denoting 

the set of zero-degree elements. We introduce the unusual 
negative gradation for the dual space and we put 

,1 1 Gifgrad  the dual space
L as the 

interpretation of the space of one-antiparticle quantum 

states. For each, k  we will define the linear spaces 

),,()( *  kkkk GHomGGandG to be 

interpreted as the state spaces of K-particles or K-

antiparticles. We start with the 2K- -linear evaluation 

map with value either in the determinant for the fermionic 
case or with the value in the permanent for the bosonic, or 
just with the value in the trace for the tonsorial case, 
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Here per is short for permanent. Both cases of the 
determinant for fermions and of the permanent for bosons 
are discussed in lectures by Feynman(1972). We will use 
for either case the symbol as ev  the short for the 

evaluation, with the meaning that 

.det, traceevandperevev TBF  In the case of 

fermions, the evaluation map (1) also has the geometrical 
meaning of the oriented measure of the k-dimensional 

volume of the parallelograms, and therefore play the most 
important role in the multiple integral calculus. (Whitney 
1957). We can look to (1) in two dual ways: first as for the 
external products(symmetric )or external skew-
symmetric(Grassman), and second as an external tensor 
product: 

)2......(..........).........,(

),(
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



LLL

LLL

KK

KK

 

We need to choose the proper notation for the maps (2).In 
the skew-symmetric case the multiplication (2) has been 
invented by Hermann Grassman in 1844 and nowadays is 
denoted by the wedge   : 

),(......).,.........(

)3........().........,(......),.....(

211

211









LLvvvLvv
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LLvvvLvv

K

k

K

k

K

k

K

k  

In what follows we will denote the map (2) by (c) which is 
short for the creation, and we will differentiate the 

different cases by a subscript ( ), TBF candcc .Now the 

subsets: 

),()(

),()(



 

LLLc

LLLc

KK

KK

……………. (4) 

are referred to as the subsets of simple or decomposable k-
particle and k-anti-particle states. We will refer also to 

)( Lcv K  the k-vector and the k-covector. This 

terminology is common for F and B cases, however, for T 
cases we have no obvious particle interpretation. In 
quantum theory, the decomposable states are called the 

pure states. The subset (4) generates freely  linear 

spaces ).,(),(   LLGandLLG KKKK

For each .degdeg, kandGvkvk K   If 

the state orv is not decomposable then we say that the 

particular one-particle (or one—anti-particle) states, from 

which )( orv has been built using the creation (2), are 

virtual for v. 

Both creators, of particles and anti-particles, are denoted 

by the same symbol c. For each,
kGt   we have: 

)5........(),.....,(,),.....( ,...,,....11 11 kk vvtvvkk citcvvtandvvt   

Here we inverted twice the mapping argument (the duality 
principle). The first inversion 1k is non-injective and 
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coincides with the creator mapping (2). This one can see as 
follows: 

).,...,(),...,(),....,,,....( 1

,...,1,...1

1

1
1

k

vvkk

k

k
k cvvcvvev 


  

The second inversion in (5) gives the pair of 
monomorphisms 

)6..().........,(   GHomG Ik  

For ,dim one can show easily that I in (6) is an 

isomorphism (because the vector spaces 
G and their 

dual has the same dimension). We identify the universal 
property of the creator mapping (2) with the existence of 
the monomorphism (6). Therefore the universal property, 
according to (5), means that  
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kk
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k
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k
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2. Nonassociative Grassmann Algebra: 

We have started with 2 k-linear evaluation maps (1), 
determining the pair of creators: 

)9.(..........* k
c

kk GLorL   

Thanks to the universal property (6), we get the bilinear 
evaluation: 

.0GGG kk  
 

Now we consider the Z-graded vector space over Z: 

.................
21012





GGGGGGG

K

Zk
 This 

gradation is not usual; it is not positive. In quantum theory 

FB GandG  referred to as the Fock spaces of the 

multi-bosons and anti-bosons states (for B) and 
analogously for fermions chose the convention that if 

0k  then –k denotes the number of antiparticles if k>0 

then k denotes the number of particles then they put deg 

a= k .kGa  

Their task was to make the vector space G into the 
nonassociative graded commutative algebra. They define a 

homomorphism g ),( EndGGHom  which makes the 

space G into the algebra (G, g) and they consider only the 

skew-symmetric Grassmann case. They built up g from the 
usual external and internal Grassmann multiplications for 
fermions and anti-fermions i.e. from four different 
creation-annihilation operators. First one should start with 
the definition of the (left) Grassmann creation operators. 
The creation operators were identified with the case when, 
(deg a)(deg b)≥0, then 

pqp

a

Cq GaGbabCGb a  )(  and (

..deg.deg) babCa  ……(10) 

The above multiplication ( 0pq ) is graded 

commutative and associative 

aCbC b

ba

a

))(deg(deg)( ……………… (11) 

.degdeg)deg(,)(

).(

)12...(..............................)()()(

,0))(deg(deg0degdegdeg

0

ZfafCandCC

CofbackpullthedenoteCHere

bfCbCfGbCf

thenbaandfbalet

aaa
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aaa













  

It is important to realize that GCa 
*

 is well-defined by 

(12) only for 

)13.......().........)(deg)(deg)deg(0)(deg)(deg 2* afafCa a   

C
*

(not yet in )),( GEndGHom is the annihilation 

operator, 

  0(deg)(deg**  baallforbCdefineweandCa aa

The annihilation operator was defined when a
*

*

aCG
C

  and they define bCa

*
for all 

0))(deg(deg ba  demanding in addition to (3), that 

0* bCa  for ..0)deg()(deg * eibCa a 

.0))(deg(deg)(deg 2  baa Both above 

multiplications are known as the “external and “internal” 
Grassmann Multiplications and are denoted 
correspondingly by

)( creationemisionexternalC  , and

)(int* nannhilitioabsorptionernali  . 

Using this notation, they define the full Grassmann non-
associative multiplication operator g as 
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g is “self-adjoin” *gg   . The creation of particles is 

associative, however, annihilation is not associative. 

The nonassociative Grassmann algebra means, just the 
pair (G, g), the Grassmann   Z- graded linear space G with 
the above Grassmann multiplication (11). The most 
important property of Grassmann products is  

 

 

Equation (15) is essentially equivalent to the associatively 
of the usual Grassmann exterior product (10-11). One can 
mention that for the finite-dimensional case, important in 

the nuclear shell theory, when  Ln dim , the 

definition (14) should be complemented by the additional 

condition 0bga
 for nba  degdeg   and for 

nba  degdeg  

this means that 0bga
 for nba ))(deg(deg adeg

2)(deg a  and for                                                                            

nba ))(deg(deg   )(deg a  2)(deg a

………………………………………………….…(16) 

From (14) we have non-zero terms 

 

By simple check, we can show that 17.1 and 17.4 are not 

compatible with 0))(deg(deg ba and that 17.2 and 

17.3 are not compatible with 0))(deg(deg ba  

Therefore (15) follows at once. Also, the relation (15) 
contains the usual four different anti-commutative 
relations for the creation operators of Fermions and anti-
fermions (17.1), and for the annihilation operators of 
fermions and anti-fermions (17.4). In the finite-

dimensional case, we have also andG n nG 
. In the 

opposite of the particular (fermions) case, the annihilation 
of the anti-holes is the associative operation (external 
Grassmann multiplication) as the hole creation is not the 
associative operator” I”. 

    3. The new multiplication of the Algebra:  

We will give a multiplication table for this algebra over IR 
(which makes sense over any field of characteristics not 
two). 

Some basic definitions:  

Definetion1: The thp   exterior power Vp  of finite–

dimensional vector space V  is the dual space of the vector 

space of alternating multi-linear forms of degree P onV  . 

Elements of Vp  are called vectorsp   The subspace  

inrVr ),...,1,0(   V generated by the elements of 

the form ),...,(..., 11
Vofbasisiseewhenee nii r

  

Said to be the r-th exterior power of the space V.We have: 

.,)1(3

02

,...,0,dim1

VvVuifuvvu

nrifv

nr
r

n
V

srrs

r

r















         

The elements of the space  ),...,1,0(  rVr
are said to 

be r-vectors, which are closely connected with r-
dimensional subspaces in V.    

Definition 2:The k-th exterior power of V denoted Vk is 

the vector subspace V spanned by the elements of the 

form  IfkiVxxxx ik .,...2,1,,...21 Vk

,  
 can be expressed as an exterior product of k elements 

of V, then  is said to be decomposable. 

Definition 3:Any element of the exterior algebra can be 
written as a sum of k-vectors. Hence, as a vector space, the 
exterior algebra is a direct sum : 

.,

,...

10

210

VVandKV

wherVVVVV n




 

(14)  

(15)  

17.1 

17.2 

17.3 

17.4 
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And therefore its dimension is equal to the sum of 

binomial coefficients, which is .2n
Moreover if K is the base 

field, the exterior product is graded anticommutative, 
meaning that if 

.)1(   kppk thenandV  

Definition 4: Let 
kVVVV ,.......,,, 321

 be k-vectors in
nIR . 

Define the exterior product 
kVVV  .....21

 by 

stipulating that: 

(i) 0VV  , for any vector 
nIRV   

(ii) VWWV  )1( , for any vector V and W in 
nIR  

(III) With the exception of (i) and (ii) all algebraic rules 
which apply to “ordinary multiplication” also apply to “ ”  

Remark:  andIReLet n
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When   denotes the number of transportations required 

to obtain 
kiii  .....21

  

We now have vector spaces  p
 of dimension ),( pnC , 

naturally associated with V. The space  '
  is by 

definition the dual space of the space of linear functions on 

V , so  '''
 by converting we have FF 

 . 

Given P vectors VVpVVV ,.......,,, 321
 we also have a 

corresponding vector  p

pVVV .....21   and 

the notation suggests that there should be a product so 
that we can remove the brackets:  

qpqp vvvuuuvvvuuu  ,........),....()....( 21212121
 

 By consequence, if H and K are two complements parts of 

the interval  n,1 of IN, and pnkikpnin ji  )(,)( are two 

sequences of elements of H and K respectively given in 
increasing order, then for 

ipiiH xxxX  ......21  and 

)(21 ...... pnjjjK xxxX   

We have 

nKH xxxXX  ......)1( 21


 , where   is the 

number of the order pairs   KHji ,  such that i>j. 

Now, consider a finite-dimensional vector space V with 
dimension n and the Z-graded vector space of the external 
direct sums and we consider a vector space A with 
coefficients taken from an algebraic field F (For practical 
purposes, F may be the field for real or complex number): 

**1

1011

.....

.......









nn

nnA  

If the dim V= n and  neee ,...., 21
 is a basis of V, then the 

set  niiieee kikii  ....1/.... 2121
 is a 

basis for . k
. By counting the basis elements, the 

dimension k
 is the binomial coefficient ),( knC . In 

particular,  0k , for k>n, and 1 . 

Corollary:   If nV dim , then 

  12122dim 1  nnnA  

Proof:  Since  nv dim  then 

 

When *
  and 1
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),(dim nnCn  , )1,(dim 1   nnCn ,……….

),(dim * nnC , )0,(dim 0 nC  

So 12122dim 1  nnnA  

Hence if ndim  then  12dim 1  nA  

       Any element of A can be written as a sum of 
multisector. Hence, as a vector space, A can be written as a 

direct sum
**1

1011

....

......









nn

nnA
 

     Definition 5: Now we can define nonassociative 
Grassmann Algebra by “composing” the exterior product 
and the interior product of exterior Algebra and 
Symmetric Algebra in one product over the vector space A. 
As a result, we get a nonassociative Grassmann Algebra 
with the following multiplication: 

havewevvv

anduuufor

n

jqjj

n

ipii





).....(

)...(

21

21

 

 

 

and the exterior Product 

 

    

4. EXAMPLES: 

                   

1dimdimdim *101    

   and 312dim 11  A , and the table of multiplication 

is given by:         

 e  1e  2e  

e  e 
1e  2e  

1e  1e  0 e  

2e  2e  e  0 

multiplication is given by:  
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                  Example 1: Suppose that  1dim   then 

*101 A         

     and 712dim 12  A , the table of  

   and .1dim 2   ,2dim 1  

 ,1dim 2     ,2dim 1  ,1dim 0     

  21012A       

Example 2: Suppose that  2dim   then 
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Example 3: Suppose that  3dim   then  

                               
'10123A    

,1dim 3     ,3dim 2     ,3dim 1      ,1dim 0   ,3dim 1  
 ,3dim 2   ,1dim 3  

  

  and 1512dim 13  A , and the table of multiplication is given by: 

  e1 e2 e3 
e1 ^ 
e2 

e1 ^ e3 
e2 ^ 
e3 

e1^ 
e2^e3 e 

p 1 p 2 p 3 p 1^p2 p 1^p3 p 2^p3 
p1^p 
2^p3 

e1 0 
e1 ^ e2 

e1 ^ 
e3 0 0 

e1^ 
e2^e3 0 e1 0 0 0 

p 2 p 3 
0 

p 2^p3 

e2 
-
(e1^e2) 0 

e2 ^ 
e3 0 

-(e1^ 
e2^e3) 0 0 e2 0 e 0 

-p 1 
0 

-p3 
-(p 
1^p3) 

e3 
-
(e1^e3) -(e2^e3) 0 

e1^ 
e2^e3 0 0 0 e3 0 0 e 0 

p 1 p2 p 1^p2 

e1 ^ e2 
0 0 

e1^ 
e2^e3 0 0 0 0 

e1 ^ e2 
0 0 0 e 0 

0 -p3 

e1 ^ e3 
0 

-(e1 ^ 
e2^e3)  0 0 0 0 0 

e1 ^ e3 
0 0 0 0 e 

0 -p 2 

e2 ^ e3 
e1^ 
e2^e3 0 0 0 0 0 0 

e2 ^ e3 
0 0 0 0 0 e 

p 1 

e1^ 
e2^e3 0 0 0 0 0 0 0 

e1^ 
e2^e3 0 

0 
0 0 0 0 

e 

e e1 e2 e3 
e1 ^ 
e2 

e1 ^ e3 
e2 ^ 
e3 

e1^ 
e2^e3 e 

p 1 p 2 p 3 p 1^p2 p 1^p3 p 2^p3 
p1^p 
2^p3 

p 1 
e 0 0 e2 e3 0 

e2 ^ e3 p 1 
0 

p 1^p2 p 1^p3 
0 0 

p1^p 
2^p3 0 

p 2 
0 e 0 -e1 0 

-e3 
-
(e1^e3) 

p 2 
-(p 

1^p2) 0 
p 2^p3 

0 
  -
(p1^p2^p3)  

0 
0 

p 3 
0 0 e 0 e1 e2 

e1 ^ e2 p 3 
-(p 
1^p3) 

-(p 
2^p3) 0 p1^p2^p3 0 0 0 

p 1^p2 0 0 0 e 0 0 -e3 p 1^p2 0 0 p1^p2^p3 0 0 0 0 

p 1^p3 
0 0 0 0 e 0 -e2 

p 1^p3 
0 

-(p1^p 
2^p3) 0 0 0 0 0 

p 2^p3 
0 0 0 0 0 e e1 

p 2^p3 
p1^p 
2^p3 0 0 0 0 0 0 

p1^p 
2^p3   0 0 0 0 0 0 e 

p1^p 
2^p3 0 0 0 0 0 0 0 

   

 
1e  

2e  21 ee   e  
1p  2p  21 pp   

1e  
0 

21 ee   
0 

1e  e  0 
2p  

2e  - )( 21 ee   
0 0 

2e  
0 e  - 1p  

21 ee   
0 0 0 

21 ee   
0 0 e  

e  
1e  2e  21 ee   e  

1p  2p  21 pp   

1p  e  0 
2e  1p  

0 
21 pp   

0 

2p  
0 e  - 1e  2p  -( 21 pp  ) 

0 0 

21 pp   
0 0 e  

21 pp   
0 0 0 

  32*
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The  present  paper  is  devoted  to  the  formalism  of  the  Grassmann  and  symmetric  algebras  We  combine  the  exterior  and  interior  products  for  both  algebras  in  one  product  on  the  Z-graded  vector  space  which  gives  the  nonassociative  Grassmann  algebra(definition  5)  which  incorporates  the  full  set  of  the  creation  and  annihilation operators  for  both  particles  and  antiparticles.We  also  gave some  exaples  in  different  dimensions  with  their  tables  of multiplication.  We  compare  the  fermionic  case  (related  to determinant)with  the  bosonic  one  (related  to  permanent).In future research, we can study some properties of this algebra as  a  non-associative  algebra.

Conclusion:  
gardedZP  identities and characters of the Grassmann 
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